• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 27
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 10
  • 7
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 300
  • 300
  • 299
  • 122
  • 55
  • 55
  • 45
  • 39
  • 28
  • 26
  • 22
  • 22
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Investigations on the antidiabetic actions of natural products using in vitro and in vivo systems. / CUHK electronic theses & dissertations collection

January 2006 (has links)
alpha-Glucosidase from yeast was used to screen for alpha-glucosidase inhibitory activities in Chinese herbal medicines. Seventy crude extracts were studied. The extracts of Semen Fagopyri Esculenti, Herba Euphorbiae Humifusae, Radix Polygoni Multiflori, Cortex Cinnamomi, Radix Paeoniae Rubra, and Radix Paeoniae Alba exhibited alpha-glucosidase inhibitory activities. These herbs have high potential for finding active compounds to develop into new antidiabetic drugs. / In this study, an assay technique involving brush border membrane vesicles was developed to screen for glucose uptake inhibitory actions in sixteen compounds from natural sources. Two compounds, namely naringenin and desoxyrhaponticin, were demonstrated to exhibit moderate inhibitory action on glucose uptake in rabbit intestinal brush border membrane vesicles, and showed very strong inhibitory action in rat everted intestinal sleeves. The kinetics study indicated that they behave as competitive inhibitors on glucose uptake. Moreover, they could reduce the level of the glucose uptake in the diabetic rat intestinal and renal membrane vesicles. In vivo study further demonstrated that desoxyrhaponticin could significantly reduce the glucose levels after a single oral administration of glucose in neonatal streptozotocin-induced diabetic rats, but not naringenin. These results suggest that naringenin and desoxyrhaponticin may be useful in the control of hyperglycemia. They act by inhibiting glucose uptake in the intestine and glucose reabsorption in the renal proximal tubules. / On the other hand, several synthetic compounds based on the structure of valienamine were found to show strong inhibition on intestinal alpha-glucosidases such as sucrase, glucoamylase and maltase. The strongest inhibitor was further studied. It could reduce the postprandial plasma glucose level of neonatal streptozotocin-induced diabetic rats. These results demonstrated that it has the potential to develop inter an oral antihyperglycemic agent. / The objective of this study is to improve the postprandial hyperglycemic conditions of diabetes by two approaches: (1) inhibiting the digestive enzymes (alpha-glucosidases), and (2) inhibiting active glucose transport in the small intestine. We have screened for new inhibitors of alpha-glucosidase and monosaccharide cotransporters from natural products and their derivatives. These compounds may be useful in the management of type 2 diabetes and diabetic complications. / Type 2 diabetes mellitus accounts for 90-95% of all diabetic cases and has become a major health concern over the world. There is increasing evidence that postprandial hyperglycemia, a hallmark of diabetes, plays a critical role in the development of type 2 diabetes and cardiovascular complications. Therefore the early identification of postprandial hyperglycemia and its effective control can offer the potential for early intervention and prevention of diabetic complications. / Li Jianmei. / "August 2006." / Adviser: Christopher H. K. Cheng. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1592. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2006. / Includes bibliographical references (p. 161-180). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
232

Association study of transcription factors regulating insulin secretion and action in type 2 diabetes in Chinese.

January 2008 (has links)
Ho Sin Ka Janice. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 105-119). / Abstracts in English and Chinese. / Chapter CHAPTER 1. --- Introduction / Chapter 1.1. --- Epidemiology of Type 2 Diabetes --- p.1 / Chapter 1.2. --- Risk factors contributing to Type 2 Diabetes --- p.3 / Chapter 1.2.1. --- Environmental and physiological factors --- p.3 / Chapter 1.2.2. --- Genetic factors --- p.3 / Chapter 1.3. --- Disruption of energy homeostasis in the pathogenesis of type 2 diabetes --- p.6 / Chapter 1.3.1. --- Clinical spectrum of diabetes --- p.6 / Chapter 1.3.2. --- Insulin as a key regulator of energy homeostasis --- p.7 / Chapter 1.3.3. --- Insulin secretion and glucose metabolism --- p.8 / Chapter 1.3.4. --- Insulin action and lipid metabolism --- p.9 / Chapter 1.3.5. --- Lipotoxicity and glucotoxicity --- p.12 / Chapter 1.3.6. --- Role of transcription factors as metabolic switch --- p.13 / Chapter 1.4. --- Candidate genes implicated in type 2 diabetes susceptibility --- p.15 / Chapter 1.4.1. --- Candidate genes involved in insulin secretion pathway --- p.15 / Chapter 1.4.1.1. --- HNF4A --- p.15 / Chapter 1.4.1.2. --- HNF1A --- p.16 / Chapter 1.4.1.3. --- PDX1/PBX1 --- p.17 / Chapter 1.4.1.4. --- NEUROD1 --- p.17 / Chapter 1.4.1.5. --- GCK --- p.17 / Chapter 1.4.1.6. --- KCNJ11/ABCC8 --- p.18 / Chapter 1.4.2 --- Candidate genes involved in insulin action pathway --- p.19 / Chapter 1.4.2.1. --- PPARG --- p.19 / Chapter 1.4.2.2. --- PPARA --- p.20 / Chapter 1.4.2.3. --- PPARGC1A --- p.20 / Chapter 1.4.2.4. --- ADIP0Q --- p.21 / Chapter 1.4.2.5. --- LPL --- p.21 / Chapter 1.4.2.6. --- UPC --- p.22 / Chapter 1.5. --- Hypothesis and objectives of the study --- p.23 / Chapter CHAPTER 2. --- Materials and methods / Chapter 2.1. --- Study design --- p.25 / Chapter 2.1.1. --- Two-stage candidate gene association design --- p.25 / Chapter 2.1.2. --- Power calculation --- p.27 / Chapter 2.2. --- Study cohort --- p.29 / Chapter 2.2.1. --- Subject recruitment --- p.29 / Chapter 2.2.2. --- Clinical and biochemical measurements --- p.30 / Chapter 2.2.3. --- Clinical definitions --- p.31 / Chapter 2.3. --- Genetic study --- p.32 / Chapter 2.3.1. --- Candidate gene selection --- p.32 / Chapter 2.3.2. --- SNP selection --- p.32 / Chapter 2.3.3. --- DNA sample preparation --- p.35 / Chapter 2.3.4. --- Genotyping methods --- p.36 / Chapter 2.3.4.1. --- Allele specific Tm shift assay --- p.36 / Chapter 2.3.4.2. --- Mass spectrometry assay --- p.40 / Chapter 2.4. --- Data quality control --- p.42 / Chapter 2.4.1. --- Stage 1 --- p.42 / Chapter 2.4.2. --- Stage 2 --- p.42 / Chapter 2.5. --- Statistical analysis --- p.45 / Chapter 2.5.1. --- Stage 1 analysis --- p.45 / Chapter 2.5.2. --- Stage 2 analysis --- p.45 / Chapter 2.5.3. --- Stage 1 and 2 combined analysis --- p.46 / Chapter CHAPTER 3. --- Results / Chapter 3.1. --- Clinical characteristics of subjects in stages 1 and 2 studies --- p.48 / Chapter 3.2. --- Case-control associations in stage 1 --- p.51 / Chapter 3.2.1. --- Association with T2D --- p.51 / Chapter 3.2.2. --- Association with T2D subset by metabolic syndrome --- p.54 / Chapter 3.3. --- Case-control associations in stage 2 --- p.60 / Chapter 3.3.1. --- SNP selection for genotyping --- p.60 / Chapter 3.3.2. --- Association with T2D --- p.63 / Chapter 3.3.3. --- Association with T2D subset by metabolic syndrome --- p.64 / Chapter 3.4. --- Case-control associations in combined stages 1 and 2 --- p.66 / Chapter 3.4.1. --- Association with T2D --- p.66 / Chapter 3.4.2. --- Association with T2D subset by metabolic syndrome --- p.70 / Chapter 3.4.3. --- Association with T2D subset by age at diagnosis --- p.74 / Chapter 3.4.4. --- Association with T2D subset by gender --- p.76 / Chapter 3.4.5. --- Genetic epistasis for T2D association --- p.79 / Chapter 3.5. --- Metabolic traits associations in control subjects in combined stages 1 and 2 studies --- p.83 / Chapter CHAPTER 4. --- Discussion --- p.86 / Chapter 4.1. --- Role of insulin secretion genes in type 2 diabetes --- p.87 / Chapter 4.2. --- Role of insulin action genes in type 2 diabetes --- p.92 / Chapter 4.3. --- Combined genetic effects on risk for type 2 diabetes --- p.97 / Chapter 4.4. --- Summary --- p.98 / Chapter 4.5. --- Limitation of this study and future direction --- p.101 / REFERENCES --- p.104 / APPENDICES --- p.119 / Chapter Appendix 1: --- Gene structure and linkage disequilibrium of genotyped SNPs of candidate genes --- p.119 / Chapter Appendix 2: --- Information of SNPs genotyped in stage 1 --- p.130 / Chapter Appendix 3: --- T2D association results (additive model) of 152 SNPs for stage 1 case- control samples --- p.137 / Chapter Appendix 4: --- T2D association results (additive model) of 152 SNPs for stage 1 case- control samples subset by metabolic syndrome status in cases --- p.144 / Chapter Appendix 5: --- T2D association results (additive model) of 22 SNPs for stage 2 case- control samples --- p.151 / Chapter Appendix 6: --- T2D association results (additive model) of 22 SNPs for stage 2 case- control samples subset by metabolic syndrome status in cases --- p.153
233

Mechanisms responsible for the alteration of lipolysis in diabetic (+db/+db) mice.

January 2008 (has links)
Lam Tsz Yan. / Thesis submitted in: October 2007. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract (English) --- p.i / 論文摘要 --- p.iv / Acknowledgements --- p.vi / Publications --- p.vii / Abbreviations --- p.ix / Contents --- p.x / Chapter 1. --- General Introduction --- p.1 / Chapter 1.1. --- Obesity --- p.1 / Chapter 1.1.1. --- Overview --- p.1 / Chapter 1.1.2. --- Pathophysiology --- p.1 / Chapter 1.1.3. --- Central obesity --- p.3 / Chapter 1.2. --- Diabetes --- p.7 / Chapter 1.2.1. --- Overview --- p.7 / Chapter 1.2.2. --- Pathophysiology --- p.8 / Chapter 1.3. --- Lipolysis --- p.9 / Chapter 1.3.1. --- Proteins participating in triglyceride lipolysis --- p.10 / Chapter 1.3.1.1. --- Hormone-sensitive lipase (HSL) --- p.10 / Chapter 1.3.1.2. --- Adipose triglyceride lipase (ATGL) --- p.10 / Chapter 1.3.1.3. --- Perilipins --- p.11 / Chapter 1.3.2. --- Abnormal regulation of lipolysis in obesity --- p.11 / Chapter 1.3.3. --- Disturbed lipolysis in insulin resistance --- p.13 / Chapter 1.4. --- Pharmacotherapy --- p.13 / Chapter 1.4.1. --- Obesity --- p.13 / Chapter 1.4.1.1. --- Orlistat --- p.13 / Chapter 1.4.1.2. --- Sibutramine --- p.14 / Chapter 1.4.1.3. --- Others --- p.15 / Chapter 1.4.2. --- Diabetes --- p.15 / Chapter 1.4.2.1. --- Modulation of the β-cells functions --- p.15 / Chapter 1.4.2.2. --- Control of glucose output --- p.16 / Chapter 1.4.2.3. --- Modulation of carbohydrate absorption --- p.16 / Chapter 1.4.2.4. --- Thiazolidinediones (TZDs) --- p.16 / Chapter 1.5. --- Animal models used in type 2 diabetes and obesity research --- p.17 / Chapter 1.6. --- Aim of study --- p.18 / Chapter 2. --- β-Adrenoceptors (β-ARs) --- p.21 / Chapter 2.1. --- Introduction --- p.21 / Chapter 2.1.1. --- Hormonal control of lipolysis --- p.21 / Chapter 2.1.1.1. --- Catecholamines --- p.21 / Chapter 2.1.1.2. --- Insulin --- p.23 / Chapter 2.1.2. --- Folic acid (folate) --- p.23 / Chapter 2.1.2.1. --- Physiological roles of folate --- p.23 / Chapter 2.1.2.2. --- Folate deficiency and its consequences --- p.24 / Chapter 2.1.2.3. --- Hyperhomocysteinemia --- p.24 / Chapter 2.1.2.4. --- Pleiotropic effects of folate --- p.25 / Chapter 2.1.2.5. --- Role of folate in type 2 diabetes and obesity --- p.26 / Chapter 2.1.3. --- Lingzhi --- p.28 / Chapter 2.1.3.1. --- Triterpenoids --- p.29 / Chapter 2.1.3.2. --- Polysaccharides --- p.30 / Chapter 2.2. --- Materials and methods --- p.32 / Chapter 2.2.1. --- Materials --- p.32 / Chapter 2.2.1.1. --- Composition of physiological salt solution --- p.32 / Chapter 2.2.1.2. --- Materials used in lipolysis experiment --- p.32 / Chapter 2.2.1.3. --- Materials used in reverse transcription polymerase chain reaction (RT-PCR) --- p.34 / Chapter 2.2.1.4. --- Materials used in Western blotting --- p.34 / Chapter 2.2.2. --- Methods --- p.36 / Chapter 2.2.2.1. --- Lipolysis experiment --- p.36 / Chapter 2.2.2.1.1. --- Animals --- p.36 / Chapter 2.2.2.1.2. --- Drug administration --- p.36 / Chapter 2.2.2.1.3. --- Isolation of adipocytes --- p.37 / Chapter 2.2.2.1.4. --- Lipolysis measurement --- p.37 / Chapter 2.2.2.1.5. --- Data analysis --- p.38 / Chapter 2.2.2.2. --- RT-PCR --- p.38 / Chapter 2.2.2.2.1. --- Tissue preparation --- p.39 / Chapter 2.2.2.2.2. --- RNA extraction --- p.39 / Chapter 2.2.2.2.3. --- Reverse transcription (RT) --- p.40 / Chapter 2.2.2.2.4. --- Polymerase chain reaction (PCR) --- p.40 / Chapter 2.2.2.2.5. --- Agarose gel electrophoresis --- p.41 / Chapter 2.2.2.2.6. --- Data representation and analysis --- p.41 / Chapter 2.2.2.3. --- Western blotting --- p.42 / Chapter 2.2.2.3.1. --- Tissue preparation --- p.42 / Chapter 2.2.2.3.2. --- Protein extraction --- p.42 / Chapter 2.2.2.3.3. --- Western blotting --- p.42 / Chapter 2.2.2.3.4. --- Data representation and analysis --- p.43 / Chapter 2.3. --- Results --- p.43 / Chapter 2.3.1. --- Studies on the β-adrenoceptor-mediated lipolytic response in +m/+db and +db/+db mice --- p.43 / Chapter 2.3.1.1. --- Effect of β2-adrenoceptor agonist on lipolysis --- p.43 / Chapter 2.3.1.2. --- Effect of β3-adrenoceptor agonists and their antagonists on lipolysis --- p.44 / Chapter 2.3.1.3. --- Effect of non-selective β-adrenoceptor agonists and their antagonists on lipolysis --- p.45 / Chapter 2.3.1.4. --- Effect of modulators of intracellular cyclic nucleotide monophosphate on lipolysis --- p.46 / Chapter 2.3.1.5. --- Effect of exogenously delivered nitric oxide on lipolysis --- p.47 / Chapter 2.3.1.6. --- Gene expression of β-adrenoceptors in white adipose tissue --- p.47 / Chapter 2.3.1.7. --- Protein expression of β-adrenoceptors in white adipose tissue --- p.47 / Chapter 2.3.2. --- Effect of folic acid treatment on lipolysis --- p.48 / Chapter 2.3.2.1. --- Determination of body weight --- p.48 / Chapter 2.3.2.2. --- Effect of β2-adrenoceptor agonist on lipolysis --- p.48 / Chapter 2.3.2.3. --- Effect of β-adrenoceptor agonists on lipolysis --- p.49 / Chapter 2.3.2.4. --- Effect of non-selective β-adrenoceptor agonist on lipolysis --- p.50 / Chapter 2.3.2.5. --- Effect of modulators of intracellular cyclic nucleotide monophosphate on lipolysis --- p.51 / Chapter 2.3.2.6. --- Effect of exogenously delivered nitric oxide on lipolysis --- p.52 / Chapter 2.3.2.7. --- Gene expression of β-adrenoceptors in white adipose tissue --- p.52 / Chapter 2.3.2.8. --- Protein expression of β-adrenoceptors in white adipose tissue --- p.53 / Chapter 2.3.3. --- Effect of Lingzhi (water-extract) treatment on lipolysis --- p.54 / Chapter 2.3.3.1. --- Determination of body weight --- p.54 / Chapter 2.3.3.2. --- Lipolytic effect of forskolin --- p.54 / Chapter 3. --- Peroxisome Proliferator-Activated Receptor-y (PPAR-γ) --- p.91 / Chapter 3.1. --- Introduction --- p.91 / Chapter 3.1.1. --- Peroxisome proliferator-activated receptors --- p.91 / Chapter 3.1.1.1. --- Peroxisome proliferator-activated receptor-γ --- p.91 / Chapter 3.1.1.1.1. --- "PPAR-γ in obesity, lipid metabolism and type 2 diabetes" --- p.91 / Chapter 3.1.1.1.2. --- PPAR-γ in inflammation and atherosclerosis --- p.92 / Chapter 3.1.1.2. --- PPAR-γ and thiazolidinediones --- p.93 / Chapter 3.2. --- Materials and method --- p.95 / Chapter 3.2.1. --- Materials --- p.95 / Chapter 3.2.1.1. --- Composition of physiological salt solution --- p.95 / Chapter 3.2.1.2. --- Materials used in lipolysis experiment --- p.95 / Chapter 3.2.1.3. --- Materials used in RT-PCR --- p.95 / Chapter 3.2.1.4. --- Materials used in Western blotting --- p.95 / Chapter 3.2.2. --- Methods --- p.96 / Chapter 3.2.2.1. --- Lipolysis experiment --- p.96 / Chapter 3.2.2.2. --- RT-PCR --- p.96 / Chapter 3.2.2.3. --- Western blotting --- p.97 / Chapter 3.3. --- Results --- p.97 / Chapter 3.3.1. --- Effect of PPAR-γ agonists on lipolysis --- p.97 / Chapter 3.3.2. --- Gene expression of PPAR-γ in white adipose tissue --- p.97 / Chapter 3.3.3. --- Protein expression of PPAR-γ in white adipose tissue --- p.97 / Chapter 4. --- 3-Hydoxy-3-MethylgIutaryl Coenzyme A (HMG-CoA) Reductase --- p.106 / Chapter 4.1. --- Introduction --- p.106 / Chapter 4.1.1. --- Cholesterol metabolism and cardiovascular diseases --- p.106 / Chapter 4.1.2. --- Statins --- p.106 / Chapter 4.1.2.1. --- Modes of action --- p.107 / Chapter 4.1.2.2. --- Therapeutic efficacy of statins --- p.108 / Chapter 4.1.2.2.1. --- Diabetes --- p.108 / Chapter 4.1.2.2.2. --- Coronary artery disease --- p.109 / Chapter 4.1.3. --- Distribution and expression of HMG-CoA reductase --- p.109 / Chapter 4.2. --- Materials and method --- p.110 / Chapter 4.2.1. --- Materials --- p.110 / Chapter 4.2.1.1. --- Composition of physiological salt solution --- p.110 / Chapter 4.2.1.2. --- Materials used in lipolysis experiment --- p.110 / Chapter 4.2.1.3. --- Materials used in RT-PCR --- p.110 / Chapter 4.2.1.4. --- Materials used in Western blotting --- p.110 / Chapter 4.2.2. --- Methods --- p.110 / Chapter 4.2.2.1. --- Lipolysis experiment --- p.110 / Chapter 4.2.2.2. --- RT-PCR --- p.111 / Chapter 4.2.2.3. --- Western blotting --- p.111 / Chapter 4.3. --- Results --- p.112 / Chapter 4.3.1. --- Effect of statins on lipolysis --- p.112 / Chapter 4.3.2. --- Gene expression of HMG-CoA reductase in various internal organs --- p.112 / Chapter 4.3.3. --- Protein expression of HMG-CoA reductase in various internal organs --- p.113 / Chapter 5. --- Discussion --- p.122 / Chapter 5.1. --- β-adrenoceptor-mediated lipolysis --- p.122 / Chapter 5.2. --- Studies on peroxisome proliferator-activated receptor-γ --- p.140 / Chapter 5.3. --- Studies on HMG-CoA reductase --- p.142 / Chapter 5.4. --- Further studies --- p.147 / Chapter 5.5. --- Conclusions --- p.148 / Chapter 6. --- References --- p.152
234

Antioxidants in Canadian boreal forest : indigenous medicinal plant treatments in relation to non-insulin dependent diabetes mellitus

McCune, Letitia M. January 1999 (has links)
No description available.
235

The Effects Of Insulin-dependent Diabetes Mellitus On Cognitive Functioning, Learning Difficulties, And Behavioral Problems In Children

Akay, Sinem 01 January 2010 (has links) (PDF)
The aim of the present study was to investigate the influence of insulin-dependent diabetes mellitus (IDDM) on the cognitive functioning, learning difficulties, and behavioral problems in children between the ages of 7 and 12. The sample was composed of elementary school children living in Ankara, Turkey. Data was collected by administering demographic information form, Children&rsquo / s Depression Inventory (CDI), Strength and Difficulties Questionnaire (SDQ), Wechsler Intelligence Scale for Children&ndash / Revised (WISC-R), and Specific Learning Disability Scale. One-way ANOVAs were employed to examine the differences among the levels of parental education, income, school achievement, and child&rsquo / s adherence to IDDM in terms of WISC-R scores, learning difficulty related variables, behavioral problems, and depression. Results revealed that children with low adherence to IDDM were more likely to experience behavioral problems and depression. T-tests were conducted to examine the mean differences between IDDM and control groups in terms of WISC-R scores, and the variables related to learning difficulties, behavioral problems, and depression. As compared to control group, children with IDDM had lower WISC-R information, similarities, arithmetic, and total scores. Also, children with IDDM had lower achievement in several arithmetic, reading, and writing tasks. Furthermore, hierarchical multiple regression analyses were conducted to test the effect of IDDM adherence, age of onset, and illness duration on cognitive functioning, learning, and behaviors. The results did not reveal any significant effect of IDDM related variables on children&rsquo / s cognitive functioning, learning, or behaviors. Findings were discussed with reference to the relevant literature. Implications of the study were discussed and future research topics were suggested.
236

Managing diabetes according to Mexican American immigrants

Hadwiger, Stephen C. January 2001 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 228-243). Also available on the Internet.
237

Antioxidants in Canadian boreal forest : indigenous medicinal plant treatments in relation to non-insulin dependent diabetes mellitus

McCune, Letitia M. January 1999 (has links)
Medicinal plants, as part of traditional ingestion practices, may contain antioxidants to combat the oxidative stress which is implicated in prediabetes as well as many of the complications of diabetes, As Indigenous Peoples move further from their traditional lifestyles, and therefore their use of medicinal plants, incidence of diabetes has increased dramatically, Those medicinal plants of the boreal forest that have been used for 3 or more symptoms of diabetes or its complications were selected for analysis. Three different assays (DPPH, NBT/xanthine oxidase and DCF/APPH) determined the antioxidant activity of 35 medicinal plant species. The majority of the species (89%) had free radical scavenging activity significantly greater than the market produce tested (Tukey, P < 0.05), 63% had superoxide scavenging activities similar to vitamin C, and eight species had free radical scavenging activity similar to green tea. Considering that many of these species are also used for food or beverage they represent an antioxidant benefit to the traditional lifestyle. Among the parts used medicinally, roots and barks were used the most frequently with activity in the order of fruit > bark > leaves > roots. The perennials selected had activity in rank trees > shrubs > herbs and the activity associated with habitat found rocky areas > woodland > wet/boggy habitats. Species used for symptoms such as diarrhea, rheumatism, tonic and heart/chest pain were typically high in antioxidant activity. Using cluster analysis it was determined that species used for diarrhea and heart disease as well as those used for a combination of tonic, sores, urinary, blood, pregnancy and boils could also be species with high antioxidant activity. The greater the number of symptoms a species was used for, the greater the activity. Three species with high antioxidant activities, Rhus hirta, Cornus stolonifera and Solidago canadensis, inhibited TNF production in human macrophage cells suggesting a po
238

Reflex control of the vasculature in healthy humans, type 2 diabetic subjects and cardiac transplant recipients

Weisbrod, Cara Jane January 2004 (has links)
[Truncated abstract] Cardiovascular reflex control of the vasculature is important in maintaining adequate tissue oxygenation in the face of disturbances in physiological homeostasis. Alterations in blood oxygen levels and blood distribution evoke integrated neural, mechanical and humoral responses which modulate peripheral vasomotor tone to maintain systemic cardiovascular integrity. The balance between the local effects of hypoxia and changes in chemoreflex control of vascular tone during hypoxia determine whether net vasoconstriction or vasodilatation is evident in the peripheral vasculature. The mechanisms contributing to hypoxic vasodilatation per se have not previously been defined in healthy humans. Study 1 of this thesis (Chapter 3) investigated the mechanisms contributing to vasomotor responses to chemoreflex activation in the human forearm ... Study 2 (Chapter 4a) investigated the mechanisms controlling vasomotor responses to isocapnic hypoxia in subjects with type 2 diabetes ... Study 3 (Chapter 5) compared the vascular responses to decreased venous return in individuals with and without right atrial afferent innervation ... The results of this thesis indicate that in healthy humans isocapnic hypoxia induces sympathetic vasoconstriction, which masks underlying β-adrenoceptor mediated vasodilatation. The normal vasomotor response to isocapnic hypoxia is impaired in subjects with type 2 diabetes. Despite intact vasoconstrictor responses, subjects with type 2 diabetes exhibited attenuated adrenaline-mediated vasodilatation compared to healthy control subjects, suggesting that the chemoreflex in these subjects is ill-equipped to respond to hypoxic stress. In clinical terms, impaired reflex vasomotor
239

Genetic dissection of multifactorial disease models in the rat /

Jiao, Hong, January 2002 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2002. / Härtill 6 uppsatser.
240

Islet amyloid polypeptide (IAPP) : mechanisms of amyloidogenesis in the pancreatic islets and potential roles in diabetes mellitus /

Ma, Zhi. January 1900 (has links) (PDF)
Diss. (sammanfattning) Linköping : Univ., 2001. / Härtill 5 uppsatser.

Page generated in 0.075 seconds