• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Lysosomal degradation of insulin granules promotes β-cell failure in type 2 diabetes / La dégradation lysosomale des granules d’insuline favorise l’échec des cellules béta lors d’un diabète de type 2

Pasquier, Adrien 08 November 2016 (has links)
Notre équipe a récemment découvert l’importance du ciblage des granules d’insuline aux lysosomes lors d’une mise à jeun chez les cellules pancréatiques β. Le diabète de type 2 (TD2) est caractérisé par la résistance à l’insuline couplé au dysfonctionnement des cellules β-et à leur perte. Je souhaitais évaluer le ciblage des granules d’insuline aux lysosomes dans le contexte diabétique. Grâce à un modèle murin, nous avons trouvé que le nombre des lysosomes contenant des granules d’insuline était augmenté chez les cellules β-provenant de souris diabétiques en comparaison aux contrôles. Ceci était accompagné par l’augmentation des niveaux de la protéine lysosomale CD63. Parce que PKD1 contrôle le ciblage des granules d’insuline aux lysosomes lors d’une mise à jeun, nous nous sommes demandé si PKD1 était importante lors d’un diabète de type 2. Dans nos modèles, les niveaux de PKD1 étaient diminués en conditions diabétiques en comparaison aux contrôles. De plus, l’inhibition de PKD1 entrainait l’augmentation du ciblage des granules d’insuline aux lysosomes et accélérait l’apparition du diabète dans notre modèle murin. Nous souhaitions ensuite savoir si l’activation de PKD1 dans les cellules pancréatiques β-pouvait être avantageuse dans un contexte diabétique. De fait, grâce à l’utilisation d’un composé spécifique, nous avons pu montrer que l’activation de PKD1 menait à l’augmentation des niveaux d’insuline sur des ilots pancréatiques humains et ralentissait l’apparition du diabète dans notre modèle murin. Pour conclure, j’ai aussi débuté la caractérisation des lysosomes sur d’autres types cellulaires des ilots pancréatiques. Nous avons observé que LIMP2, une autre protéine lysosomale, était fortement exprimée chez les cellules pancréatiques α. / Our team recently uncovered the importance of the targeting of insulin granules to the lysosomal compartments in pancreatic β-cells during fasting. Type 2 Diabetes (T2D) is characterised by insulin resistance coupled with pancreatic β-cell failure which account for both β-cells dysfunction and β-cells death. I wanted to assess the targeting of insulin granule to the lysosomes in the context of T2D. Using murine diabetic model, we found that the number Granule-containing Lysosomes was enhanced in diabetic β-cells in comparison to controls. This was accompanied by an increase in the level of the lysosomal protein CD63. Because PKD1 controls the targeting of insulin granule to the lysosomes during fasting, I wondered if PKD1 was important during T2D. PKD1 levels were decreased in our diabetic models in comparison to controls. Moreover inhibition of PKD1 led to enhanced targeting of the insulin granules to the lysosomes and accelerated apparition of diabetes in our murine model. I also tested if activation of PKD1 in pancreatic β-cells could be beneficial in the context of diabetes. Indeed using a specific compound, we showed that PKD1 activation led to an increase in insulin levels and delayed onset of diabetes in our murine model. My work thus uncovered mechanisms underlying a fundamentally new process in β-cells with potential implications for novel therapeutic directions in T2D. Finally, I started to assess lysosomes in another pancreatic islets cell type. I found that LIMP2, another lysosomal membrane protein, was specifically highly expressed in the pancreatic α-cells.
2

An investigation of Coxsackie and Adenovirus receptor in the human pancreatic beta cells

Ifie, Eseoghene January 2018 (has links)
Human pancreatic beta cells are susceptible to infection by enteroviruses, especially Coxsackie B viruses, and such infections could contribute to the development of Type 1 diabetes. Enteroviruses gain entry via cell surface receptors, one of which, the Coxsackie and Adenovirus receptor (CAR), is a transmembrane cell adhesion protein which serves as a key entry receptor for Coxsackie B viruses and is thought to be localised mainly within regions where contacts are formed between adjacent cells. CAR exists as at least 5 isoforms and this study has examined their expression profile and distribution in the human pancreas utilising; formalin-fixed paraffin-embedded pancreatic sections from non-diabetic individuals, type 1 diabetes patients and a human tissue microarray. Isolated human islets, human pancreatic beta and ductal cell lines were also studied. Immunological and molecular approaches were employed to examine the expression and cellular localisation of the known CAR isoforms in human pancreas. One specific isoform of CAR (CAR-SIV) with a unique C terminal PDZ binding domain, was highly expressed in human beta cells at the protein level. Surprisingly, it was distributed in a punctate manner mainly within the cytoplasm of the cells, rather than at the cell surface. In human beta cells, within the cytoplasm CAR-SIV co-localised with ZnT8, PC1/3 and insulin but less so with proinsulin suggesting that CAR-SIV is associated with insulin secretory granules. Immunogold labelling and electron microscopic analysis revealed that CAR-SIV is localised both to maturing insulin secretory granules and to fully mature, dense-core (insulin) secretory granules. Intriguingly, CAR-SIV colocalises and interacts with a cytosolic protein, PICK1, which plays a role in the budding, maturation and trafficking of insulin secretory granules. On this basis, a model is proposed whereby CAR-SIV and PICK1 interact to regulate the maturation and trafficking of insulin secretory granules. Overall, this study suggests that the specialised role and subcellular localisation of CAR-SIV in human beta cells may contribute to their sensitivity to enteroviral infection following externalisation of the protein at the cell surface, during insulin exocytosis.

Page generated in 0.0401 seconds