• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 10
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The genus and localization of groups

O'Sullivan, Niamh Eleanor January 1996 (has links)
No description available.
2

Toric varieties and residues

Shchuplev, Alexey January 2007 (has links)
<p>The multidimensional residue theory as well as the theory of integral representations for holomorphic functions is a very powerful tool in complex analysis. The computation of integrals, solving algebraic or differential equations is usually reduced to some residue integral. It is a notable feature of the theory that it is based on few model differential forms. These are the Cauchy kernel and the Bochner-Martinelli kernel. These two model kernels have been the source of other fundamental kernels and residue concepts by means of homological procedures.</p><p>The Cauchy and Bochner-Martinelli forms possess two common properties: firstly, their singular sets are the unions of complex subspaces, and secondly, the top cohomology group of the complement to the singular set is generated by a single element. We shall call such a set an atomic family and the corresponding form the associated residue kernel.</p><p>A large class of atomic families is provided by the construction of toric varieties. The extensively developed techniques of toric geometry have already produced many explicit results in complex analysis. In the thesis, we apply these methods to the following two questions of multidimensional residue theory: simplification of the proof of the Vidras-Yger generalisation of the Jacobi residue formula in the toric setting; and construction of a residue kernel associated with a toric variety and its applications in the theory of residues and integral representations. The central role in our construction is played by the theorem stating that under some assumptions a toric variety admits realisation as a complete intersection of toric hypersurfaces in an ambient toric variety.</p>
3

Toric varieties and residues

Shchuplev, Alexey January 2007 (has links)
The multidimensional residue theory as well as the theory of integral representations for holomorphic functions is a very powerful tool in complex analysis. The computation of integrals, solving algebraic or differential equations is usually reduced to some residue integral. It is a notable feature of the theory that it is based on few model differential forms. These are the Cauchy kernel and the Bochner-Martinelli kernel. These two model kernels have been the source of other fundamental kernels and residue concepts by means of homological procedures. The Cauchy and Bochner-Martinelli forms possess two common properties: firstly, their singular sets are the unions of complex subspaces, and secondly, the top cohomology group of the complement to the singular set is generated by a single element. We shall call such a set an atomic family and the corresponding form the associated residue kernel. A large class of atomic families is provided by the construction of toric varieties. The extensively developed techniques of toric geometry have already produced many explicit results in complex analysis. In the thesis, we apply these methods to the following two questions of multidimensional residue theory: simplification of the proof of the Vidras-Yger generalisation of the Jacobi residue formula in the toric setting; and construction of a residue kernel associated with a toric variety and its applications in the theory of residues and integral representations. The central role in our construction is played by the theorem stating that under some assumptions a toric variety admits realisation as a complete intersection of toric hypersurfaces in an ambient toric variety.
4

Properties and zeros of 3F2 hypergeometric functions

Johnston, Sarah Jane 31 October 2006 (has links)
Student Number : 9606114D PhD Thesis School of Mathematics Faculty of Science / In this thesis, our primary interest lies in the investigation of the location of the zeros and the asymptotic zero distribution of hypergeometric polynomials. The location of the zeros and the asymptotic zero distribution of general hy- pergeometric polynomials are linked with those of the classical orthogonal polynomials in some cases, notably 2F1 and 1F1 hypergeometric polynomials which have been extensively studied. In the case of 3F2 polynomials, less is known about their properties, including the location of their zeros, because there is, in general, no direct link with orthogonal polynomials. Our intro- duction in Chapter 1 outlines known results in this area and we also review recent papers dealing with the location of the zeros of 2F1 and 1F1 hyperge- ometric polynomials. In Chapter 2, we consider two classes of 3F2 hypergeometric polynomials, each of which has a representation in terms of 2F1 polynomials. Our first result proves that the class of polynomials 3F2(−n, a, b; a−1, d; x), a, b, d 2 R, n 2 N is quasi-orthogonal of order 1 on an interval that varies with the values of the real parameters b and d. We deduce the location of (n−1) of its zeros and dis- cuss the apparent role played by the parameter a with regard to the location of the one remaining zero of this class of polynomials. We also prove re- sults on the location of the zeros of the classes 3F2(−n, b, b−n 2 ; b−n, b−n−1 2 ; x), b 2 R, n 2 N and 3F2 (−n, b, b−n 2 + 1; b − n, b−n+1 2 ; x), n 2 N, b 2 R by using the orthogonality and quasi-orthogonality of factors involved in its representation. We use Mathematica to plot the zeros of these 3F2 hypergeometric polynomials for different values of n as well as for different ranges of the pa- rameters. The numerical data is consistent with the results we have proved. The Euler integral representation of the 2F1 Gauss hypergeometric function is well known and plays a prominent role in the derivation of transformation identities and in the evaluation of 2F1(a, b; c; 1), among other applications (cf. [1], p.65). The general p+kFq+k hypergeometric function has an integral repre- sentation (cf. [37], Theorem 38) where the integrand involves pFq. In Chapter 3, we give a simple and direct proof of an Euler integral representation for a special class of q+1Fq functions for q >= 2. The values of certain 3F2 and 4F3 functions at x = 1, some of which can be derived using other methods, are deduced from our integral formula. In Chapter 4, we prove that the zeros of 2F1 (−n, n+1 2 ; n+3 2 ; z) asymptotically approach the section of the lemniscate {z : |z(1 − z)2| = 4 27 ;Re(z) > 1 3} as n ! 1. In recent papers (cf. [31], [32], [34], [35]), Mart´ınez-Finkelshtein and Kuijlaars and their co-authors have used Riemann-Hilbert methods to derive the asymptotic distribution of Jacobi polynomials P(an,bn) n when the limits A = lim n!1 an n and B = lim n!1 Bn n exist and lie in the interior of certain specified regions in the AB-plane. Our result corresponds to one of the transitional or boundary cases for Jacobi polynomials in the Kuijlaars Mart´ınez-Finkelshtein classification.
5

Integrální reprezentace prostorů vektorových spojitých funkcí / Integral representation of spaces of vector-valued continuous functions

Rondoš, Jakub January 2017 (has links)
No description available.
6

Integrální reprezentace operátorových algeber / Integral representation of operator algebras

Penk, Tomáš January 2013 (has links)
By a representation of a C*-algebra A on a Hilbert space H we mean a morphism : A → L(H). After summing up neccessary knowledge from the theory of Banach and Hilbert spaces and C*-al- gebras we show that for every C*-algebra a representation exists. We describe its structure detiledly and we focus on examining cyclic representations. We find out that cyclic representations relate to the state space. Because every state can be expressed as an integral with respect to an appropriate measure on the states, in is possible to assign a measure on the state space to each cyclic represen- tation. Therefore, we investigate connexion of a representation with this measure as same as with the corresponding state. This leads us to the definition of an orthogonal measure. We find out that its properties relate with certain subalgebras of L(H). At the end we show that for a separable C*-algebra it is possible to express a representation fulfilling suitable assumptions in the form of a direct integral. 1
7

Minkowski space Bethe-Salpeter equation within Nakanishi representation / Equacao de Bethe-Salpeter no espaco de Minkowski dentro da representacao de Nakanishi

Gutiérrez Gómez, Cristian Leonardo [UNESP] 27 October 2016 (has links)
Submitted by Cristian Gutierrez (cristian@ift.unesp.br) on 2016-11-25T17:35:07Z No. of bitstreams: 1 Cristian_Gutierrez_PhD_Thesis.pdf: 2056100 bytes, checksum: 98402a9e05e7c393491419def7ff3ca9 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-11-30T13:24:29Z (GMT) No. of bitstreams: 1 gutierrezgomez_cl_dr_ift.pdf: 2056100 bytes, checksum: 98402a9e05e7c393491419def7ff3ca9 (MD5) / Made available in DSpace on 2016-11-30T13:24:29Z (GMT). No. of bitstreams: 1 gutierrezgomez_cl_dr_ift.pdf: 2056100 bytes, checksum: 98402a9e05e7c393491419def7ff3ca9 (MD5) Previous issue date: 2016-10-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O trabalho apresentado nessa tese foi dedicado em explorar soluções de estado ligado para a equação de Bethe-Salpeter, obtidas diretamente no espaço de Minkowski. Para isso, consideramos um procedimento que combina a representação integral de Nakanishi para a amplitude Bethe-Salpeter, desenvolvido por N. Nakanishi na década de sessenta, em conjunto com a projeção da amplitude de Bethe-Salpeter no plano nulo, também conhecida como a projeção na frente de luz. Este método, além de permitir calcular as energias de ligação, que são acessíveis a partir de cálculos bem conhecidos no espaço Euclidiano, permite que se obtenha a amplitude Bethe-Salpeter no espaço de Minkowski e a função de onda de valência na frente de luz. A verificação da validade desse procedimento foi confirmada através de comparação da amplitude de Bethe-Salpeter obtida diretamente no espaço Euclidiano com a amplitude correspondente derivada da equação de Bethe-Salpeter, usando a representação integral de Nakanishi, uma vez a rotação de Wick é realizada. O sucesso dessa abordagem, quando aplicado ao problema do estado ligado de duas partículas escalares trocando uma outra partícula escalar no estado fundamental, assim como o estudo correspondente no limite de energia zero, nos motivou a ampliar a aplicação do procedimento para o estudo de outros problemas de interesse. Em particular, o método foi estendido para o estudo de sistemas com duas dimensões espaciais e uma temporal (2+1), considerando o interesse crescente que surgiu em Física da matéria condensada, onde podemos destacar o caso de elétrons de Dirac no grafeno. Nessa análise preliminar, nos restringimos ao modelo escalar que nos permitiu acessar as principais dificuldades que deverão ser enfrentadas ao estudar o problema do estado ligado entre dois férmions. Dessa forma, este tratamento pode ser considerado como um primeiro passo para a implementação de um método mais realístico em um problema fermiônico. Os cálculos anteriores que consideramos em nossos estudos foram realizados através da aproximação de escada para o kernel de interação irredutível para os estados de onda-s. Portanto, uma das extensões que exploramos nesta tese foi o efeito de se introduzir a contribuição de ordem seguinte no kernel de interação, conhecida como a contribuição de escada-cruzada (cross-ladder). Os efeitos nas energias de ligação e na função de onda na frente de luz é foram analisados de forma detalhada, através dos resultados apresentados. Um estudo particularmente interessante, que foi extensivamente estudado nesta tese, se refere ao problema do espectro da equação Bethe-Salpeter para o estado ligado escalar-escalar. O espectro de estados excitados foi obtido com a abordagem da representação integral Nakanishi, sendo comparado com o obtido no espaço Euclidiano. Além disso, as raçoes excitado/fundamental do espectro relativístico foram reduzidas para às não-relativístico através da escolha de energias de ligação pequenas e considerando a massa do bóson trocado sendo próxima de zero. A função de onda de valência na frente de luz e a função de onda no parâmetro de impacto são apresentadas mostrando as principais características dos estados excitados conhecidos da estrutura não relativística. Na análise do espectro, também são estudadas as amplitudes de momentum-transverso para o estado fundamental e o primeiro estado excitado, que podem ser obtidos, de forma equivalente, no espaço de Minkowski assim como no espaço Euclidiano. Finalmente, focamos o estudo nos fatores de forma eletromagnéticos elásticos na abordagem da Bethe-Salpeter. Consciente de que o cálculo correto dos fatores de forma deve ser feito no espaço de Minkowski, o fator de forma elástico foi calculado levando-se em consideração a aproximação de impulso padrão. Além disso, foi também estudado o efeito da contribuição de ordem superior no fator de forma. / The work presented in this thesis was dedicated in exploring bound-state solutions of the Bethe-Salpeter equation directly in the Minkowski space. For that, we consider a method that combines the Nakanishi integral representation for the Bethe-Salpeter amplitude, developed by Noboru Nakanishi in the sixties, together with the projection of the Bethe-Salpeter amplitude onto the null-plane, also known as the light-front projection. This approach, besides of allowing to compute the binding energies, which are accessible from the usual Euclidean calculation, enables to obtain the Bethe-Salpeter amplitude in the Minkowski space and the light-front wave function. The feasibility of such an approach is further verified by comparing the Bethe-Salpeter amplitude obtained directly in the Euclidean space with the corresponding amplitude obtained by solving the Bethe-Salpeter equation, using the Nakanishi integral representation, once the Wick rotation is performed to this latter. The success of the approach when applied to study the bound state problem of two-scalar particles exchanging another scalar particle in the ground state, as well as the corresponding study at the zero-energy limit, has encouraged us to extend this method to another interesting problems. In particular, we start by extending the method to study problems in (2+1) dimensions due to the increasing interest in the condensed-matter physics, like the study of Dirac electrons in graphene. In this initial examination we restrict to the scalar model, which enables us to access to the main difficulties that we will face when studying the fermion-fermion bound state problem. Hence, this calculation can be considered as the first step towards the implementation of the method to real fermionic problems. The previous calculations have been performed by considering the ladder approximation for the irreducible interacting kernel for s-wave states. Therefore, one of the extensions that is explored in this thesis is the effect of introducing the next contribution in the interacting kernel, known as the scalar-scalar cross-ladder contribution. The effects in the eigenvalues and the light-front wave functions are analyzed in detail, by considering the computed results. A particular interesting subject, extensively studied in this thesis, is concerned to the spectrum of the Bethe-Salpeter equation for the scalar-scalar bound-state problem. The spectrum of excited states obtained with the Nakanishi integral representation approach is compared with that obtained in the Euclidean calculation. Besides, the ratio energies excited/ground of the relativistic spectrum is reduced to the non-relativistic one by choosing small binding energies and the mass of the exchanged boson approaching to zero. The valence light-front wave function and the impact-parameter space valence wave function are displayed, revealing the main features of excited states known from the non-relativistic framework. In the analysis of the spectrum, we also studied the transverse-momentum amplitudes for the ground and first-excited state, which can be equivalently obtained in the Minkowski or Euclidean spaces. Finally, we focus on the study of electromagnetic elastic form factors within the Bethe-Salpeter approach. Aware that the correct calculation of form factors should be performed in the Minkowski space, the calculation of the elastic form factor is carried out with the standard impulse approximation and in addition the effect of the next contribution to the form factor is studied.
8

Variational problems for sub–Finsler metrics in Carnot groups and Integral Functionals depending on vector fields

Essebei, Fares 11 May 2022 (has links)
The first aim of this PhD Thesis is devoted to the study of geodesic distances defined on a subdomain of a Carnot group, which are bounded both from above and from below by fixed multiples of the Carnot–Carathéodory distance. Then one shows that the uniform convergence, on compact sets, of these distances can be equivalently characterized in terms of Gamma-convergence of several kinds of variational problems. Moreover, it investigates the relation between the class of intrinsic distances, their metric derivatives and the sub-Finsler convex metrics defined on the horizontal bundle. The second purpose is to obtain the integral representation of some classes of local functionals, depending on a family of vector fields, that satisfy a weak structure assumption. These functionals are defined on degenerate Sobolev spaces and they are assumed to be not translations-invariant. Then one proves some Gamma-compactness results with respect to both the strong topology of L^p and the strong topology of degenerate Sobolev spaces.
9

Geometry and structure of Lipschitz-free spaces and their biduals

Aliaga Varea, Ramón José 17 January 2021 (has links)
[ES] Los espacios libres Lipschitz F(M) son linearizaciones canónicas de espacios métricos M cualesquiera. Más concretamente, F(M) es el único espacio de Banach que contiene una copia isométrica de M que es linearmente densa, y tal que toda aplicación Lipschitz de M en cualquier espacio de Banach X puede extenderse a un operador linear continuo de F(M) en X. Estos espacios suponen una herramienta muy potente para el estudio de la geometría no lineal de espacios de Banach, al permitir la aplicación de las técnicas lineales clásicas, bien conocidas, a problemas no lineales. Pero este esfuerzo sólo merece la pena si se dispone de un conocimiento lo bastante detallado de la estructura de F(M). El estudio sistemático de los espacios libres Lipschitz es bastante reciente y, por ello, dicho conocimiento es todavía más bien limitado. Esta tesis se enmarca en el programa general de estudio de la estructura espacios libres Lipschitz genéricos. Empezamos nuestro estudio desarrollando algunas herramientas básicas para la teoría general de espacios libres Lipschitz. Primero definimos operadores de ponderación en espacios Lipschitz y los usamos para demostrar la conjetura de Weaver de que todos los funcionales normales del bidual F(M)** son débil* continuos. A continuación demostramos el teorema de la intersección, que en esencia dice que la intersección de espacios libres Lipschitz es de nuevo un espacio libre Lipschitz. Este resultado nos permite desarrollar el concepto de soporte de un elemento de F(M), análogo al de soporte de una medida. Además, extendemos el uso de estas herramientas al bidual F(M) y las usamos para establecer una descomposición del bidual en espacios de funcionales que están "concentrados en el infinito" y "separados del infinito", respectivamente. Con estas herramientas en nuestro poder, emprendemos el estudio de dos aspectos concretos de los espacios libres Lipschitz. En primer lugar analizamos la relación entre F(M) y los espacios de medidas sobre M. En particular, obtenemos caracterizaciones de los elementos de F(M) que pueden representarse como la integración con respecto a una medida de Borel (no necesariamente finita) sobre M y viceversa, y probamos que el soporte coincide con el de la medida asociada. También identificamos los espacios métricos M en los cuales todo elemento de F(M) puede ser representado como una medida de Borel. Este análisis se generaliza al bidual F(M)**, utilizando en este caso medidas sobre la compactificación uniforme de M y llegando a resultados similares. Obtenemos también algunas consecuencias para los elementos de F(M) y F(M)** que pueden expresarse como diferencia de dos elementos positivos, como la existencia de un análogo de la descomposición de Jordan para medidas. En segundo lugar, estudiamos la estructura extremal de la bola unidad de F(M) y hacemos algunas contribuciones al programa general consistente en encontrar caracterizaciones puramente geométricas de todos sus elementos extremales. Concretamente, caracterizamos los puntos extremos preservados de la bola, así como aquellos puntos extremos y expuestos que tienen soporte finito. Además damos una descripción completa de la estructura extremal de la parte positiva de la bola unidad. La teoría de los soportes en F(M) desarrollada anteriormente juega un papel crucial en las demostraciones de estos resultados. / [CA] Els espais lliures Lipschitz F(M) són linearitzacions canòniques d'espais mètrics M qualssevol. Més concretament, F(M) és l'únic espai de Banach que conté una còpia isomètrica de M que és linealment densa, i tal que tota aplicació Lipschitz de M en qualsevol espai de Banach X pot ser estesa a un operador lineal continu de F(M) en X. Aquests espais són una eina molt potent per a l'estudi de la geometria no lineal d'espais de Banach, ja que permeten l'aplicació de les tècniques lineals clàssiques, ben conegudes, a problemes no lineals. Però aquest esforç nomes val la pena si es disposa d'un coneixement bastant detallat de l'estructura de F(M). L'estudi sistemàtic dels espais lliures Lipschitz és bastant recent i, per això, aquest coneixement és encara prou limitat. Aquesta tesi s'emmarca en el programa general d'estudi de l'estructura dels espais lliures Lipschitz genèrics. Comencem el nostre estudi desenvolupant algunes eines bàsiques per a la teoria general d'espais lliures Lipschitz. Primer definim operadors de ponderació en espais Lipschitz i els fem servir per demostrar la conjectura de Weaver que tots els funcionals normals del bidual F(M)** son feble* continus. A continuació demostrem el teorema de la intersecció, que en essència diu que la intersecció d'espais lliures Lipschitz és de nou un espai lliure Lipschitz. Aquest resultat ens permet desenvolupar el concepte de suport d'un element de F(M), anàleg al de suport d'una mesura. A més, estenem l'ús d'aquestes eines al bidual F(M)** i les fem servir per establir una descomposició del bidual en espais de funcionals que estan "concentrats a l'infinit" i "separats de l'infinit", respectivament. Amb aquestes eines al nostre abast, emprenem l'estudi de dos aspectes concrets dels espais lliures Lipschitz. En primer lloc, analitzem la relació entre F(M) i els espais de mesures sobre M. En particular, obtenim caracteritzacions dels elements de F(M) que poden representar-se com la integració respecte a una mesura de Borel (no necessàriament finita) sobre M i viceversa, i provem que el suport coincideix amb el de la mesura associada. També identifiquem els espais mètrics M on tot element de F(M) pot ser representat com una mesura de Borel. Aquesta anàlisi es generalitza al bidual F(M)**, utilitzant en aquest cas mesures sobre la compactificació uniforme de M i arribant a resultats similars. També obtenim algunes conseqüències per als elements de F(M) i F(M)** que poden expressar-se com a diferència de dos elements positius, com ara l'existència d'un anàleg de la descomposició de Jordan per a mesures. En segon lloc, estudiem l'estructura extremal de la bola unitat de F(M) i fem algunes contribucions al programa general consistent en trobar caracteritzacions purament geomètriques de tots els seus elements extremals. Concretament, caracteritzem els punts extrems preservats de la bola, així com aquells punts extrems i exposats que tenen suport finit. A més fem una descripció completa de l'estructura extremal de la part positiva de la bola unitat. La teoria dels suports en F(M) desenvolupada anteriorment juga un paper crucial en les demostracions d'aquests resultats. / [EN] Lipschitz-free spaces F(M) are canonical linearizations of arbitrary complete metric spaces M. More specifically, F(M) is the unique Banach space that contains an isometric copy of M that is linearly dense, and such that any Lipschitz mapping from M into some Banach space X extends to a bounded linear operator from F(M) into X. Those spaces are a very powerful tool for studies of the nonlinear geometry of Banach spaces, as they allow the application of well-known classical linear techniques to nonlinear problems. But this effort is only worthwhile if we have sufficient knowledge about the structure of F(M). The systematic study of Lipschitz-free spaces is rather recent and so the current understanding of their structure is still quite limited. This thesis is framed within the general program of studying the structure of general Lipschitz-free spaces. We start our study by developing some basic tools for the general theory of Lipschitz-free spaces. First we introduce weighting operators and use them to solve Weaver's conjecture that all normal functionals in the bidual F(M)** are weak* continuous. Next we prove the intersection theorem, which essentially says that the intersection of Lipschitz-free spaces is again a Lipschitz-free space. That result allows us to develop the concept of support of an element of F(M), analogous to the support of a measure. Furthermore, we extend the use of these tools to the bidual F(M)** and apply them to establish a decomposition of the bidual into spaces of functionals that are "concentrated at infinity" and "separated from infinity", respectively. With these tools at our disposal, we undertake the study of two particular aspects of Lipschitz-free spaces. First we analyze the relationship between F(M) and spaces of measures on M. In particular, we obtain characterizations of those elements of F(M) that can be represented as integration against a (not necessarily finite) Borel measure on M and vice versa, and we show that their supports agree. We also identify those metric spaces such that every element of F(M) can be represented by a Borel measure. This analysis is generalized to the bidual F(M)**, using measures on the uniform compactification of M in that case and obtaining similar results. We also derive some consequences for those elements of F(M) and F(M)** that can be expressed as the difference between two positive elements, such as the existence of an analog of the Jordan decomposition for measures. Secondly, we study the extremal structure of the unit ball of F(M) and provide some contributions to the general program of finding purely geometric characterizations of all of its extremal elements. Namely, we characterize all of its preserved extreme points, and its extreme and exposed points of finite support. We also give a full description of the extremal structure of the positive unit ball. The theory of supports developed previously plays a crucial role in the proofs of these results / The author would like to thank Marek Cúth, Michal Doucha, Antonio José Guirao, Gilles Lancien and Eva Pernecká for their careful reading and correction of this document or parts of it. Some activities related to this thesis were partially supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant MTM2017-83262-C2-2-P, and by a travel grant of the Institute of Mathematics (IEMath-GR) of the University of Granada. Part of this research was conducted during visits to the Czech Technical University in Prague in 2018 and 2020, the Laboratoire de Mathématiques de Besançon in 2019, and the University of Granada in 2020. The author wishes to express his gratitude for the hospitality and the excellent working conditions during his visits. / Aliaga Varea, RJ. (2020). Geometry and structure of Lipschitz-free spaces and their biduals [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/159256
10

New and old sub-Riemannian challenges bridging analysis and geometry

Verzellesi, Simone 15 November 2024 (has links)
The aim of this thesis is to propose a systematic exposition of some analytic and geometric problems arising from the study of sub-Riemannian geometry, Carnot-Carathéodory spaces and, more broadly, anisotropic metric and differential structures. We deal with four main topics. 1 Calculus of variations for local functionals depending on vector fields 2 PDEs over Carnot-Carathéodory structures. 3 Regularity theory for almost perimeter minimizers in Carnot groups. 4 Geometry of hypersurfaces in Heisenberg groups.

Page generated in 0.1954 seconds