• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekulare Klonierung und Expression retroviraler chimärer Integrasen im proviralen Kontext des humanen Spumaretrovirus

Doerks, Anja. January 2001 (has links)
Frankfurt (Main), Univ., Diss., 2001.
2

Biochemical and biophysical characterization of the lyase isomerase PecE/PecF complex, nicastrin the transmembrane component of the gamma-secretase complex and structural investigations of the genomic islands integrases

Szwagierczak, Aleksandra January 2009 (has links)
München, Techn. Univ., Diss., 2009.
3

Computational Structure-based Design Approaches: Targeting HIV-1 Integrase and the Macrophage Infectivity Potentiator of Legionella pneumophila / Computergestütztes strukturbasiertes Design bei HIV-1 Integrase und dem Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila

Sippel, Martin January 2010 (has links) (PDF)
Die vorliegende Arbeit thematisiert das computergestützte strukturbasierte Design auf dem Gebiet der HIV-1-Integrase und des Macrophage Infectivity Potentiator (MIP) von Legionella pneumophila. Die durchgeführten Studien geben wertvolle Aufschlüsse über den Wirk-mechanismus einer bekannten Integrase-Inhibitorenklasse and zeigt darüber hinaus einen neuartigen Ansatz zur Integrase-Inhibition auf. Im Falle des MIP-Enzyms konnten zwei niedermolekulare Inhibitoren ermittelt werden. Die Integrase-Studien ergaben wertvolle Informationen im Hinblick auf das Design neuer Inhibitoren. Docking-Experimente konnten die Hypothese weiter untermauern, nach der die Klasse der Diketosäure-Inhibitoren nicht als freie Liganden, sondern als Metallion-Komplexe an das aktive Zentrum der Integrase binden. Die Ergebnisse dieser Studie helfen dabei, das Verständnis über den Wirkmechanismus dieser wichtigen Klasse von Integrase-Inhibitoren weiter zu vertiefen. Um der Entwicklung von Integrase-Inhibitoren einen neuen Impuls zu geben, wurde eine neue Strategie zur Inhibition dargelegt: Anstatt an das aktive Zentrum soll eine neue Inhibitor-Klasse an das Dimerisierungs-Interface eines Integrase-Monomers binden, die katalytisch notwendige Dimerisierung verhindern und somit die enzymatische Aktivität stören. Das Hauptproblem hierbei bestand in den fehlenden Strukturdaten des freien Monomers. Hierzu wurden Molekulardynamik-Simulationen durchgeführt, um nähere strukturelle Informationen zu erhalten. Momentaufnahmen unterschiedlicher Konformationen dienten als Input-Strukturen für eine Docking-Studie mit dem peptidischen Inhibitor YFLLKL, um dessen Bindemodus aufzuklären. Hierbei zeigte sich, dass dieser Ligand an eine Interface-Konformation bindet, die durch eine Y-förmige Bindestelle charakterisiert ist. Im nächsten Schritt sollte diese Protein-Konformation mit kleinen, nicht-peptidischen Molekülen adressiert werden. Die erste Strategie bestand darin, ein Pharmakophor-Modell zu erstellen, das zur Suche nach Molekülen mit einer guten Komplementarität zur Y-förmigen Bindetasche geeignet ist. Das folgende virtuelle Screening ergab zehn Verbindungen, die eine gute Komplementarität und günstige hydrophobe Wechselwirkungen aufwiesen. Leider zeigte keine der Verbindungen eine reproduzierbare Aktivität im Integrase-Assay. Hierbei verbleiben jedoch gewisse Zweifel, da in dem Assay die Zugabe von BSA vorgeschrieben war, das möglicherweise die hydrophoben Inhibitor-Kandidaten gebunden hat. Die erwähnte erste Strategie wurde überdacht: In einem zweiten Ansatz galt die Hauptaufmerksamkeit der Absättigung von wasserstoffbrückenbildenden Resten. Diese waren zuvor von den eher hydrophoben Verbindungen nicht optimal abgesättigt worden. Zwei Pharmakophor-Modelle wurden erstellt und in einem virtuellen Screening eingesetzt: Docking-Studien der Hits zeigten jedoch, dass nach wie vor viele wasserstoffbrückenbildende Reste des Proteins nicht vom Liganden abgesättigt wurden. Nach abschließender eingehender Betrachtung der Bindemoden der verbliebenen Moleküle aus dem virtuellen Screening konnten nur acht für weitere Testungen ausgewählt werden (Ergebnisse der experimentellen Testung durch Kooperationspartner stehen noch aus). Diese geringe „Ausbeute“ an geeigneten Verbindungen für das Integrase-Dimerisierungsinterface zeigt, wie schwer dieses Target zu adressieren ist: Das Interface weist eine schnell wechselnde Abfolge von basischen, sauren und hydrophoben Resten auf. Im Gegensatz zu anderen Protein-Protein-Interfaces zeigt das Integrase-Interface keine „aufgeräumte“ Bindetasche mit klar voneinander getrennten hydrophoben und hydrophilen Bereichen. Für das zweite Enzym, MIP, konnten mit Hilfe des strukturbasierten Designs zwei niedermolekulare Inhibitoren gefunden werden. Beide Verbindungen führten zu einer deutlichen Abnahme der katalytischen Aktivität. Soweit bekannt, sind bisher keinerlei niedermolekulare MIP-Inhibitoren veröffentlicht. Der Vergleich von MIP mit der humanen PPIase FKBP12 zeigte eine größtenteils ähnliche Tasche, die jedoch einen entscheidenden Unterschied aufweist, nämlich in der Orientierung des Restes Tyr109. Die detaillierte Betrachtung der Strukturdaten beider Enzyme konnte schließlich eine Erklärung liefern, warum ein ketoacyl-substituiertes Pipecolinderivat nicht an MIP bindet, ein sulfonsubstituiertes Pipecolinderivat hingegen das Enzym inhibiert. Die Erkenntnisse über das Inhibitoren-Design für Legionella-MIP können auch auf andere Organismen (z.B. Trypanosomen) übertragen werden, bei denen ebenfalls (homologes) MIP ein Pathogenitätsfaktor ist. / In this thesis, computational structure-based design approaches were employed to target the HIV-1 integrase and the macrophage infectivity potentiator (MIP) of Legionella pneumophila. The thesis yields valuable information about the mechanism of action of a known class of integrase inhibitors and a novel approach towards enzyme inhibition, which still is mainly unaddressed in current integrase research. For the MIP enzyme, two small-molecule MIP inhibitors were discovered. The computational studies of HIV-1 integrase have provided valuable information for IN inhibitor design. Docking experiments supported the hypothesis that the well-known diketo acid inhibitors enter the IN active site not as free ligands, but rather as metal complexes. These results help to reveal the mechanism of action of this important class of IN inhibitors.To give an impulse for the development of a novel class of inhibitors, a new strategy towards IN inhibition was introduced: An alternative binding site, the dimerization interface of an IN catalytic core domain monomer, was explored for inhibitor design. The lack of structural data of the free monomer was overcome by extensive MD studies. Snapshots derived from the MD simulation were used as protein input structures in a docking study with the inhibitory peptide YFLLKL to reveal its potential binding mode. The docking procedure showed that the peptidic ligand binds to a dimerization interface conformation which shows a Y-shaped binding site.. The next step was to address this protein conformation with small, non-peptidic molecules. The first strategy towards finding small-molecule interface binders was to create a pharmacophore model with hydrophobic features and shape constraints, aiming to find molecules with a good complementarity to the Y-shaped dimerization interface. Virtual screening yielded a total of 10 compounds, which all displayed good shape complementarity and favorable hydrophobic interactions. Unfortunately, none of the compounds showed a reproducible inhibitory activity in biological assays. Some doubts remain about the validity of the assay results: The use of BSA was critical, since it is not unlikely that BSA “intercepted” the hydrophobic candidate compounds. The first strategy towards finding small-molecule dimerization inhibitors was reconsidered: In the second approach, the satisfaction of hydrogen bonding residues at the dimerization interface, was of major interest. Two pharmacophore models were employed, which retrieved several hundred hit molecules. However, docking of these molecules showed that still many hydrogen bonding groups of the protein remained unaddressed by the ligands. Eventually, after visual inspection, only eight molecules were selected as candidate compounds for further testing (results pending). This small “yield” underlines the difficulties in finding interface binders: The IN dimerization interface is a peculiar target with frequently alternating basic, acidic, and hydrophobic residues. It is not a well-ordered binding site with continuous hydrophobic areas and distinct hydrogen bond donors / acceptors. Other protein-protein interfaces show such well-ordered binding sites. Accordingly, the peculiarity of the IN dimerization interface, in addition to the delicate task of disrupting protein-protein interactions at all, makes the development of IN dimerization inhibitors very challenging. For MIP, the studies revealed two experimentally validated MIP inhibitors, which significantly reduce MIP enzymatic activity. To our knowledge, no small-molecule MIP inhibitor has been reported in the literature so far. A detailed analysis of the available structural data of MIP and a comparison to the human PPIase counterpart, FKBP12, pointed out a conformational diversity among the MIP structures and a crucial difference between the two PPIases, which could be traced to mainly one residue (Tyr109). The detailed comparison of FKBP12 and MIP complex structures made it possible to give an explanation, why a ketoacyl-substituted pipecoline derivative most probably does not bind to MIP, but a sulfone-substituted pipecoline derivative does bind to MIP. Knowledge of Legionella MIP inhibitors could be transferred also to other organisms (e.g. trypanosoms), where homologous MIP proteins are also pathological factors.

Page generated in 0.0613 seconds