• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analysis and Control Aspects of a PMSynRel Drive in a Hybrid Electric Vehicle Application

Zhao, Shuang January 2013 (has links)
This thesis deals withmodeling and control of an electric drive equipped with a permanentmagnet assisted synchronous reluctance (PMSynRel) machine for a plug-in hybrid electric vehicle application. In the first part of the thesis, a special use of the PMSynRel machine in consideration, known as an integrated charger concept, is investigated. The integrated charger feature allows using the PMSynRel machine as a part of the vehicle’s on-board charging system when charging the battery from the grid. A finite-element based analysis is performed providing important insights into the machine operation during the charging process. Dynamic models are developed that facilitate the controller development and the estimation of the efficiency during charging. In the second part of the thesis, position sensorless control of the PMSynRel drive when applied in an automotive application is considered and analyzed thoroughly. First, a fundamental-excitation based rotor-position estimation technique is investigated. The study shows that the impact of current dynamics on the resulting torque dynamics has to be considered in some very demanding applications. Second, focus is put on signalinjection based sensorless control methods. Impacts of nonlinearities, such as magnetic saturation, cross-saturation and inductance spatial harmonics, on sensorless control performance are investigated and methods to improve the sensorless control quality are summarized and presented. An approach to determine the feasible region for operating sensorless at low-speeds without directly measuring the differential inductances is proposed. For the PMSynRel drive in consideration, the achievable maximum torque is limited when operating sensorless following the maximum-torque-per-ampere (MTPA) current reference trajectory at low-speeds. An optimization approach is therefore proposed which extends the output torque when operating sensorless while still maintaining a relatively high efficiency. To initialize the sensorless control correctly from standstill, the impact of the saturated magnetic bridges in the rotor is also investigated. Finally, torsional drive-train oscillations and active damping schemes are considered. An off-vehicle setup for implementing and evaluating different active damping schemes is proposed. Of particular interest for sensorless operation in automotive applications, the impact of slow speed estimation on the possibility to achieve good active damping control is investigated and a design approach that allows the implementation of an active damping scheme using estimated speed is suggested. / <p>QC 20140114</p>
2

Modeling and Control of a PMSynRel Drive for a Plug-InHybrid Electric Vehicle

Zhao, Shuang January 2011 (has links)
This thesis presents two transient models for a prototype integrated charger for use in a plug-in hybrid-electrical vehicle application. The models can be useful in order to develop control algorithms for the system or to recommend improvements to the machine design. A flux map based method, obtaining input data from simulations using the finite element method (FEM) is used to model the grid synchronization process. The grid side voltage can then be predicted by incorporating spatial flux linkage harmonics. The model is implemented in Matlab/Simulink and compared to stand alone FEM simulations with good agreement. The charging process is modeled using an inductance based model also requiring FEM simulations as input data. Since the flux linkages in the grid and inverter side windings are dependent on each other, the presented transient model is linearized around a specific operating point. This model is also implemented in a Matlab/Simulink environment. Sensorless control of a PMSynRel drive is also studied in this thesis. Focus is put on operating limits due to magnetic saturation when operating at low speeds. The rotating and pulsating voltage vector injection methods for sensorless control are studied in detail. A technique to map the feasible sensorless control region is proposed which utilizes the resulting position error signal rather than data of differential inductances. This technique is implemented experimentally and compared to corresponding FEM simulations with good agreement. The impact of spatial inductance harmonics on the quality of the position estimates is also studied. A method to predict the maximum position estimation error due to the inductance harmonics is proposed based on simplified analytical models. A technique is presented and experimentally verified which can compensate for this effect by injecting a modified rotating voltage carrier. Lastly, the impact of saturation in the rotor structure on the initial magnet polarity detection is investigated. The experimental results, in good agreement with the corresponding FEM simulations, indicate that the impact of saturation in the magnet bridges of rotor is the dominant phenomenon at lower peak current magnitudes. / QC 20110928
3

Design of a Permanent-Magnet Assisted Synchronous Reluctance Machine for a Plug-In Hybrid Electric Vehicle

Khan, Kashif Saeed January 2011 (has links)
QC 20111214

Page generated in 0.1258 seconds