• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5532
  • 1073
  • 768
  • 625
  • 541
  • 355
  • 145
  • 96
  • 96
  • 96
  • 96
  • 96
  • 96
  • 95
  • 83
  • Tagged with
  • 11523
  • 6074
  • 2557
  • 2002
  • 1683
  • 1419
  • 1359
  • 1318
  • 1217
  • 1136
  • 1075
  • 1039
  • 1013
  • 892
  • 886
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Field dependence revisited : an evaluation of issues for education and psychology

Jones, Anne E. January 1997 (has links)
No description available.
172

Feedforward neural network forecasting model building evaluation : theory and application in business forecasting

Liao, Kua-ping January 1999 (has links)
No description available.
173

Multi-agent as a decision support system

Chin, Shou-fong January 1994 (has links)
No description available.
174

An architecture for animated human-like interface agents

Chen, Liming January 2002 (has links)
No description available.
175

Constraint techniques applied to teamworking tasks in clothing industry production

Lowe, Timothy James January 1998 (has links)
No description available.
176

Exploiting application parallelism in production systems

Daniel, John W. H. January 1990 (has links)
No description available.
177

The use of genetic algorithms for improving the dynamic behaviour of moving gantry-type wood routers

Sitoe, R. V. January 2000 (has links)
No description available.
178

The qualitative behaviour of dynamic physical systems

Morgan, A. J. January 1988 (has links)
Qualitative representations concentrate on general behaviours rather than numerical accuracy. This thesis introduces methods for producing qualitative descriptions of dynamically changing quantities. A distinction is made between scalar and vector representations of quantities, and several qualitative vector operations are defined, including a qualitative calculus. These operations correspond closely to their normal numerical counterparts. A systematic approach to a model-based method is presented for the analysis of physical systems, which allows the derivation of behaviour for a range of operational conditions. A simple electrical example is used to illustrate completeness of results. The use of qualitatiave reasoning for design support is shown with reference to thermal conditions in a chemical reactor. Qualitative methods are examined in the context of steady-state conditions, instabilities, and potential fault indicators. Application to control problems is illustrated by a system of coupled tanks. Progressively more complex controllers are introduced using different strategies to improve control. The problem of scaling qualitative relationships to external conditions is related to equivalent work in fuzzy logic. Detection of slow trends in system behaviour is shown through a qualitative representation of a car suspension system, which relates changes in component values to changes in system behaviour.
179

Towards a knowledge-based design support environment for design automation and performance evaluation.

Hu, Jhyfang. January 1989 (has links)
The increasing complexity of systems has made the design task extremely difficult without the help of an expert's knowledge. The major goal of this dissertation is to develop an intelligent software shell, termed the Knowledge-Based Design Support Environment (KBDSE), to facilitate multi-level system design and performance evaluation. KBDSE employs the technique, termed Knowledge Acquisition based on Representation (KAR), for acquiring design knowledge. With KAR, the acquired knowledge is automatically verified and transformed into a hierarchical, entity-based representation scheme, called the Frame and Rule Associated System Entity Structure (FRASES). To increase the efficiency of design reasoning, a Weight-Oriented FRASES Inference Engine (WOFIE) was developed. WOFIE supports different design methodologies (i.e., top-down, bottom-up, and hybrid) and derives all possible alternative design models parallelly. By appropriately setting up the priority of a specialization node, WOFIE is capable of emulating the design reasoning process conducted by a human expert. Design verification is accomplished by computer simulation. To facilitate performance analysis, experimental frames reflecting design objectives are automatically constructed. This automation allows the design model to be verified under various simulation circumstances without wasting labor in programming math-intensive models. Finally, the best design model is recommended by applying Multi-Criteria Decision Making (MCDM) methods on simulation results. Generally speaking, KBDSE offers designers of complex systems a mixed-level design and performance evaluation; knowledge-based design synthesis; lower cost and faster simulation; and multi-criteria design analysis. As with most expert systems, the goal of KBDSE is not to replace the human designers but to serve as an intelligent tool to increase design productivity.
180

Modelling and simulation for high-autonomy systems.

Chi, Sungdo. January 1991 (has links)
The basic objective of this research is to develop an architecture for systems capable of highly autonomous behavior by combining decision (intelligence), perception (sensory processing), and action (effector) components. The major challenge of this dissertation is the integration of high-level symbolic models with low-level dynamic (control-theoretic) models into a coherent model base. The systematic inclusion of dynamic and symbolic models each dedicated to support a single function such as planning, operations, diagnosis or perception allows us to extend existing multi-layered control and information architectures. A knowledge-based simulation environment is employed to simulate and verify the proposed integrated model-based architecture. The constructed working simulation version of an autonomous robot-managed laboratory demonstrates the use of multiple model families for experiment planning and execution. Tools to support the development and integration of such model families are also developed. The developed model-based architecture is elaborated by incorporating time-based simulation and causal propagation model families supporting diagnosis, repair, and replanning. This involves tools to automatically extract such models from more detailed dynamic models and structural knowledge. Systems with high levels of autonomy are critical for unmanned, and partially manned, space missions. The utility of the proposed high autonomy system will be demonstrated with models of a robot-managed fluid handling laboratory for International Space Station Freedom to be used for research in life sciences, microgravity sciences, and space medicine. NASA engineers will be able to base designs of intelligent controllers for such systems on the architecture developed in this dissertation. They will be able to employ our tools and simulation environment to verify such designs prior to their implementation.

Page generated in 0.0635 seconds