• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transmission cohérente et interaction de type gravitationnel dans un nuage froid de Strontium

Chalony, Maryvonne 16 December 2010 (has links) (PDF)
Ce mémoire présente les résultats expérimentaux obtenus sur un nuages d'atomes froids de Strontium 88. Une première étude permet l'observation expérimentale inédite d'un système quasi-1D présentant une interaction attractive à longue portée type gravitationnel. Elle provient d'une force attractive due à l'effet d'ombre qui apparaît lors de l'absorption des faisceaux lasers par l'échantillon atomique. Nous avons ainsi retrouvé un profil de densité suivant un cosh^{-2} ainsi qu'une signature sur le mode de respiration du nuage. Une seconde étude est menée sur la transmission cohérente par un nuage de diffuseurs. Des processus de décohérence du champ transmis ont été mis en évidence, faisant ainsi apparaître de nouvelles échelles de temps caractéristiques liées à la température et à l'épaisseur optique du milieu diffusant. Nous avons également fait apparaître l'évolution de la phase entre les champs incident et transmis en fonction de l'épaisseur optique du milieu.
2

Phases classiques et quantiques des systèmes dipolaires de basse dimensionnalité / Classical and quantum phases of low-dimensional dipolar systems

Cartarius, Florian 22 September 2016 (has links)
Cette thèse étudie les phases classiques et quantiques des systèmes atomiques ou moléculaires de basse dimension en mettant un accent particulier sur le crossover dimensionnel de une à deux dimensions.La première partie de la thèse est consacrée à la description d'un système d'atomes froids interagissants avec un potentiel de contact. Plus précisément, nous étudions le dé-piégeage dynamique qui, suite à l'extinction rapide d'un réseau optique, s'opère dans un gaz composé de bosons impénétrables dans un guide d'onde atomique linéaire.  Nous employons une solution exacte, basée sur une  correspondance entre bosons en forte interaction et fermions sans interaction pour déduire l'évolution dynamique quantique exacte. Dans la limite thermodynamique, nous observons l'approche vers un état stationnaire hors équilibre, caractérisé par l'absence d'ordre hors diagonal à longue distance et une visibilité réduite de la distribution en impulsions. Des caractéristiques similaires sont observées dans un système de taille finie pour des temps  correspondant à la moitié du temps de récurrence, lors desquels nous observons que le système approche un état  quasi-stationnaire auquel le système s'approche avec une dépendance temporelle en loi de puissance.La deuxième partie de la thèse analyse l'effet des interactions dipolaires sur l'état fondamental du système. L'inclusion de l'interaction dipôle-dipôle donne lieu à de nouvelles phases quantiques du système unidimensionnel, mais peut également entraîner une instabilité transverse.Cette instabilité est tout d'abord analysée dans le régime classique. Nous considérons des particules classiques  avec interactions dipolaires, confinés sur un anneau par un potentiel harmonique radiale.  Les dipôles sont polarisés perpendiculairement au plan de confinement. En diminuant le confinement dans la direction radiale, les particules classique montrent une transition entre une chaîne simple et une chaîne double (en zigzag).  Nous montrons que cette transition est faiblement du premier ordre. Nous expliquons que la nature de cette transition est déterminée par le couplage entre les modes d'excitation transversaux et axiaux de la chaîne des dipôles.  Ce résultat est très différent du  comportement observé dans les systèmes Coulombiens, où la transition entre la chaîne linéaire et la chaîne en zigzag est continue et appartient à la classe d'universalité de la transition ferromagnétique. Nos résultats s'appliquent aux systèmes dipolaires classiques et aux atomes Rydberg, qui peuvent constituer un banc d'essai pour simuler le comportement critique des aimants couplés à des grilles.Dans le régime quantique, nous considérons un système des bosons dipolaires sur un réseaux optique, confinés par un potentiel harmonique anisotrope. Dans le régime favorisant l'instabilité d'une chaîne simple, nous démontrons que le système peut être  décrit  par un modèle de  Bose-Hubbard étendu à plusieurs modes couplés entre eux, dont les coefficients peuvent être déterminés en utilisant une théorie de basse énergie. La méthode d'intégrale de chemin Monte Carlo, la diagonalisation exacte et TEBD sont utilisés pour déterminer l'état fondamental de modèle de Bose-Hubbard étendu et démontrent que ce modèle capture la transition entre la chaîne linéaire et la chaîne en zigzag. / In this work, the classical and quantum phases of low-dimensional atomic or molecular systems is studied with a particular focus on the regime where a system goes over from a strictly one-dimensional to a two dimensional system.The first part of the thesis is dedicated to atoms interacting via contact interactions. In particular, we study the dynamical depinning following a sudden turn off of an optical lattice for a gas of impenetrable bosons in a tight atomic waveguide. We use an exact solution, which is based on an equivalence between strongly interacting bosons and noninteraction fermions, in order to derive the exact quantum dynamical evolution. At long times, in the thermodynamic limit, we observe the approach to a nonequilibrium steady state, characterized by the absence of quasi-long-range order and a reduced visibility in the momentum distribution. Similar features are found in a finite-size system at times corresponding to half the revival time, where we find that the system approaches a quasisteady state with a power-law behavior.In the second part, we study the effect of additional dipolar interactions on the ground state of the system. The inclusion of dipole-dipole interaction leads to new quantum phases of the one-dimensional system, but can also lead to a transverse instability.This instability is first analyzed in the classical regime. We study classical particles with dipolar interactions, that are confined on a chain by a harmonic potential. The dipoles are polarised perpendicular to the plane of confinement. Classical particles with repulsive power-law interactions undergo a transition from a single to a double chain (zigzag) by decreasing the confinement in the transverse direction. We theoretically characterize this transition when the particles are classical dipoles, polarized perpendicularly to the plane in which the motion occurs, and argue that this transition is of first order, even though weakly. The nature of the transition is determined by the coupling between transverse and axial modes of the chain and contrasts with the behavior found in Coulomb systems, where the linear-zigzag transition is continuous and belongs to the universality class of the ferromagnetic transition. Our results hold for classical dipolar systems and Rydberg atoms, which can offer a test bed for simulating the critical behavior of magnets with lattice coupling.In the quantum regime, we consider dipolar bosons in an optical lattice, tightly confined by an anisotropic harmonic potential. In the regime where a single chain becomes unstable, we show that the system can be mapped onto an extended multi-mode Bose-Hubbard model, where the coefficients can be determined by means of a low energy theory. A path integral Monte Carlo method, exact diagonalization and TEBD are used to determine the ground state of the extended Bose-Hubbard models. and show that the model captures the linear to zigzag transition.
3

The Wien Effect in Electric and Magnetic Coulomb systems - from Electrolytes to Spin Ice / L'effet de Wien dans systèmes de Coulomb électriques et magnétiques : des électrolytes à la glace de spin

Kaiser, Vojtech 29 October 2014 (has links)
Les gaz ou fluides de Coulomb sont composés de particules chargées couplées entre elles par interaction coulombienne à longue portée. De part la nature de ces interactions, la physique du gaz de Coulomb est très riche, comme par exemple dans des électrolytes plus ou moins complexes, mais aussi à travers l'émergence de monopôles magnétiques dans la glace de spin. Dans cette thèse nous nous intéressons au comportement hors d'équilibre des gaz de Coulomb et de la glace de spin. Au centre de cette étude se trouve le deuxième effet de Wien, qui est une croissance linéaire de la conductivité en fonction du champ électrique appliqué à un électrolyte faible. Ce phénomène est une conséquence directe de l'interaction coulombienne qui pousse les charges à se lier par paires ; le champ électrique va alors aider à dissocier ces paires et créer des charges mobiles qui amplifient la conductivité. Le deuxième effet de Wien est un processus hors-équilibre non-linéaire, remarquablement décrit par la théorie de Onsager. Nos simulations sur réseau permettent de découvrir le rôle de l'environnement ionique qui agit contre le deuxième effet de Wien, ainsi que de caractériser la mobilité du système et sa dépendance en fonction du champ externe. Les simulations nous ont aussi donné accès aux corrélations de charges qui décrivent le processus microscopique à la base de l'effet Wien. Enfin, nous regardons plus précisément le gaz émergent de monopôles dans la glace de spin, aussi appelé « magnétolyte », capable de décrire de manière remarquable les propriétés magnétiques de glace de spin. Nous décrivons la dynamique complète hors-équilibre de cette magnétolyte soumise à une forçage périodique ou une trempe dans un champ magnétique en incluant à la fois le deuxième effet de Wien et la réponse du réseau de spins qui est à la base de l'émergence des monopôles magnétiques. Tout au long, nous utilisons une simple extension des simulations de gaz de Coulomb sur réseau pour préciser nos prédictions. Il est très rare de trouver une théorie analytique du comportement hors-équilibre d'un système hautement frustré au-delà de la réponse linéaire. / A Coulomb gas or fluid comprises charged particles that interact via the Coulomb interaction. Examples of a Coulombic systems include simple and complex electrolytes together with magnetic monopoles in spin ice. The long-range nature of the Coulomb interaction leads to a rich array of phenomena.This thesis is devoted to the study of the non-equilibrium behaviour of lattice based Coulomb gases and of the quasi-particle excitations in the materials known as spin ice which constitute a Coulomb gas of magnetic charges. At the centre of this study lies the second Wien effect which describes the linear increase in conductivity when an electric field is applied to a weak electrolyte. The conductivity increases due to the generation of additional mobile charges via a field-enhanced dissociation from Coulombically bound pairs.The seminal theory of Onsager gave a detailed analysis of the Wien effect. We use numerical simulations not only to confirm its validity in a lattice Coulomb gas for the first time but mainly to study its extensions due to the role of the ionic atmosphere and field-dependent mobility. The simulations also allow us to observe the microscopic correlations underlying the Wien effect.Finally, we look more closely at the emergent gas of monopoles in spin ice—the magnetolyte. The magnetic behaviour of spin ice reflects the properties of the Coulomb gas contained within. We verify the presence of the Wien effect in model spin ice and in the process predict the non-linear response when exposed to a periodic driving field, or to a field quench using Wien effect theory. We use a straightforward extension of the lattice Coulomb gas simulations to refine our predictions. It is a highly unusual result to find an analytic theory for the non-equilibrium behaviour of a highly frustrated system beyond linear response.

Page generated in 0.1516 seconds