• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studium interakcí hlavního strukturního proteinu polyomavirů se strukturami hostitelských buněk / Major structural protein of Polyomaviruses: Interactions with host cell structures

Mrkáček, Michal January 2018 (has links)
The main structural protein VP1 is the product of late polyomaviral genes and it is the largest and the most abundant protein of the whole polyomaviral capsid. Because of the low coding capacity of the polyomaviral genomes, it is considered that in addition to its structural role the VP1 protein might have some additional functions in the late phase of the infectious cycle. This diploma thesis is exactly on these additional functions. In the case of the VP1 protein of mouse polyomavirus, it was observed that the protein is capable of binding to the structure of cellular microtubules. The first objective of this work was to test whether pentamers of the VP1 protein are able of this binding without the participation of other cellular (or viral) proteins. Based on an in vitro experiment, we showed that protein VP1 binds to the structure of microtubules very inefficiently. The second objective of this work was to prepare a detection system that would allow an identification of potential interaction partners of BK polyomavirus VP1 protein. Therefore, expression plasmids producing the N and C-terminally tagged VP1 protein were prepared. These tagged proteins had the property of being biotinylated whilst being produced in the transfected cells. By using affinity chromatography, the entire protein complexes...
2

The role of Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 2 (CNNM2) in the transepithelial magnesium transport

Seker, Murat 18 January 2022 (has links)
Magnesium ist eines der am häufigsten vorkommenden Elemente auf der Erde. Es ist sowohl für niedere als auch für höhere Organismen lebensnotwendig und für die neuronale Übertragung, die kardiale Erregungsleitung und Funktion zahlreicher Enzyme erforderlich. In höheren Organismen wird der Großteil von Mg2+ in der Niere filtriert und reabsorbiert. Störungen in diesem Prozess führen zu verschiedenen genetischen Erkrankungen beim Menschen. CNNM2 (Cyclin und CBS Domain Divalent Metal Cation Transport Mediator 2) wurde als magnesiumresponsives Gen identifiziert, seine genaue Rolle ist jedoch noch unklar. In dieser Arbeit wurden verschiedene Zell- und In-vivo-Modelle verwendet, um die Rolle von CNNM2 zu verstehen. Ich fand heraus, dass CNNM2 hauptsächlich auf der apikalen Oberfläche polarisierter MDCK-Zellen exprimiert wird, was durch Oberflächenbiotinylierungs- und Immunfluoreszenz-Experimente unterstützt wurde. Darüber hinaus wurde ARL15 durch Massenspektrometrie als neuer Interaktionspartner von CNNM2 identifiziert. Ich fand heraus, dass ARL15 die CNNM2-Oberflächenexpression erhhöhte und dessen Monomerisierung bevorteilte. Bei Mäusen führte die Deletion von Cnnm2 zu Fehlbildungen des Gehirns, verringerten Mg2+ -Spiegeln im Serum und perinatalen Letalität. Um die Rolle von CNNM2 in vivo weiter aufzuklären, wurde ein Mausmodell mit gezielter Deletion von Cnnm2 in der Niere unter Verwendung der Ksp-Cadherin-Cre-Linie erstellt, was zu einer teilweisen Verringerung der CNNM2-Spiegel führte. Insgesamt konnte diese Studie unter Verwendung von gentechnisch veränderten Mausmodellen und In-vitro Modellsystemen zum Verständnis der CNNM2-Funktion beitragen. / Magnesium is one of the most abundant elements found on earth. It is vital to both lower and higher organisms and required for neuronal transmission, cardiac conduction, and enzyme function. In higher organisms, the majority of Mg2+ is filtered in the kidney. Disturbances in this process result in various human diseases. CNNM2 (Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 2) was identified as a Mg2+ responsive gene, but its exact role is still uncertain. In this thesis, various cell and in vivo models were utilized to understand the role of CNNM2. I found that CNNM2 is expressed mostly on the apical surface of the polarized MDCK cells which was supported by cell surface biotinylation and immunofluorescence experiments. Furthermore, ARL15 was identified as a novel interaction partner of CNNM2 by mass spectrometry. I found that ARL15 increased CNNM2 surface expression and monomerization. Moreover, deletion of Cnnm2 in mice resulted in brain malformations, reduced serum Mg2+ levels and prenatal death. To further elucidate the role of CNNM2 in vivo, a mouse model with targeted deletion of Cnnm2 in the kidney was generated by using Ksp cadherin-cre line which resulted in a partial reduction in the CNNM2 levels. Overall, this study contributed to the understanding of CNNM2 function by combining genetically engineered mouse models and in vitro models.
3

Cartographie du réseau d'interactions protéiques de la machinerie de transcription dans les cellules humaines

Rusu, Natalia 12 1900 (has links)
Les protéines sont les macromolécules les plus polyvalentes de la cellule. Elles jouent un rôle fondamental dans la majorité des processus biologiques à travers la formation de complexes multi-protéiques. Durant la transcription, une multitude de facteurs sont impliquées dans le contrôle de l’activité des complexes ARN polymérases. Notre laboratoire s’est intéressé au réseau d’interaction de la machinerie de transcription des ARN polymérases nucléaires, dans le but de mieux comprendre leurs mécanismes de régulation. Pour ce faire, une procédure protéomique comprenant la purification de complexes protéiques par affinité couplée à la spectrométrie de masse et à l’analyse bioinformatique a été développée. La méthode de purification TAP (Tandem Affinity Purification) a été adaptée pour permettre la purification de complexes protéiques solubles assemblés in vivo à partir de cellules humaines. L’objectif de mon projet de maîtrise était de purifier le complexe de l’ARN Pol I ainsi que de poursuivre l’expansion du réseau d’interactions protéine-protéine de la machinerie de transcription de l’ARN Pol II humaine. À l’aide des protéines POLR1E, TWISTNB, POLR2E, PFDN4, MBD2, XPA, CAND1 et PDCD5 étiquetées (TAP-tag) exprimées dans des lignées cellulaires ECR-293, plusieurs complexes protéiques solubles ont été purifiés et analysés par spectrométrie de masse. Les interactions protéiques ont été triées et validées bioinformatiquement pour donner en final une liste d’interactions ayant un haut degré de confiance à partir de laquelle des réseaux d’interactions protéine-protéine ont été créés. Le réseau créé au cours de ce projet connecte plusieurs composantes de la machinerie transcriptionnelle tels que les ARN Pol I, II et III, les complexes RPAP3/R2TP/prefoldin-like, TRiC/CCT, Mi-2/NuRD et des facteurs de transcription et de réparation de l’ADN. Ce type d’analyse nous a permis d’identifier et de caractériser de nouveaux régulateurs de la machinerie de transcription de l’ARN Pol I et II et de mieux comprendre son fonctionnement. / Proteins are the most versatile macromolecules of the cell. They play a fundamental role in the majority of biological processes through the formation of multiprotein complexes. During transcription, a multitude of factors are involved in the control of activity of RNA polymerases. Our laboratory was interested in defining the nuclear RNA polymerases transcription machinery interaction network to better understand their regulatory mechanisms. To do so, a proteomic procedure that allows affinity purification of protein complexes coupled to mass spectrometry and computational data analysis was developed. The tandem affinity purification procedure has been adapted for the purification of soluble protein complexes as they likely exist in live mammalian cells. The aim of my master project was to purify the RNA Pol I complex as well as to further pursue the expansion of the protein-protein interaction network of the human RNA Pol II transcription machinery. By using POLR1E, TWISTNB, POLR2E, PFDN4, MBD2, XPA, CAND1 and PDCD5 TAP – tagged proteins expressed in EcR-293 cell lines, multiple soluble protein complexes were purified and analyzed by mass spectrometry. Protein interactions have been sorted and validated computationally. High-confidence dataset of interactions were used to build the protein-protein interaction networks. The network created for this project connects several components of the transcriptional machinery such as RNA Pol I, II and III, RPAP3/R2TP/prefoldin-like, TRiC/CTC, Mi-2/NuRD complexes and DNA repair and transcription factors. This type of analysis allowed us to identify and characterize new regulators of RNA Pol I and II transcription machinery and to better understand its functioning.
4

Funktionelle Charakterisierung der humanen Tryptophanhydroxylase 2

Tenner, Katja 09 October 2007 (has links)
Die Tryptophanhydroxylase (TPH) katalysiert den geschwindigkeitsbestimmenden Schritt der Synthese des wichtigen Neurotransmitters Serotonin. Kürzlich wurde ein zweites TPH-Isozym, die TPH2, entdeckt. Es stellte sich heraus, dass dieses Isozym für die Serotoninsynthese im Zentralnervensystem verantwortlich ist, wohingegen die TPH1 lediglich der Ausgangspunkt der Serotoninsynthese in den peripheren Geweben ist. Da Störungen im Serotoninstoffwechsel mit einer Vielzahl von psychiatrischen Erkrankungen in Verbindung gebracht werden, rückt nun die als neuronales Enzym identifizierte TPH2 in den Fokus der Forschung. In dieser Arbeit konnte gezeigt werden, dass TPH1 und 2 sich nicht nur in ihren Expressionsorten sondern auch in ihren grundlegenden biochemischen Eigenschaften voneinander unterscheiden. Die TPH1 stellte sich als aktiveres der beiden Enzyme heraus. Der N- und C-Terminus der TPH2 konnten als auf die Aktivität des Enzyms inhibierend bzw. aktivierend wirkende Strukturen identifiziert werden und stellen damit interessante Angriffspunkte für die pharmakologische Beeinflussung dar, wobei der N-Terminus als TPH2-spezifische Struktur eine gezielte Beeinflussung des serotonergen Systems im Zentralnervensystem ohne Auswirkungen auf das periphere System ermöglichen würde. In weiteren Projekten konnte die Existenz von mindestens zwei, die Enzymaktivität nicht beeinflussenden Proteinkinase A-Phosphorylierungsstellen in der TPH2 nachgewiesen werden, es konnte ein auf einem fluorometrischen Prinzip basierender High-Throughput-Assay zur Bestimmung der TPH-Aktivität entwickelt werden, Tubulin beta2A wurde als Interaktionpartner der TPH2 identifiziert, die Auswirkungen eines in vitro aktivitätssenkenden Tph2-SNPs auf die Serotoninlevel und das Verhalten verschiedener Mausstämme konnte durch die Generierung und Untersuchung von congenen Mäusen als unbedeutend eingestuft werden und die Expression von TPH1-mRNA wurde als Marker für endometriale Karzinome identifiziert. / Tryptophan hydroxylase (TPH) catalyzes the rate limiting step of the synthesis of the important neurotransmitter serotonin. Recently a new TPH isoenzyme, TPH2, was discovered. It turned out that this isoenzyme is responsible for the serotonin synthesis within the central nervous system, whereas the TPH1 is merely the starting point of serotonin synthesis in peripheral tissues. Since dysfunction in the metabolism of serotonin is related to a large number of psychiatric diseases, the neuronal TPH2 moved into the centre of interest. As a basis for the pharmacological manipulation of the central nervous serotonergic system, without influencing the periphery, the identification of differences between the two isoenzymes is essential. In this thesis it was shown that TPH1 and 2 not only differ in their expression sites but also in their basic biochemical characteristics. TPH1 turned out to be the more active enzyme. Furthermore it was shown that the N- and C-termini of TPH2 have an inhibitory respectively activating influence on the enzymatic activity. Therefore they became interesting targets for pharmacological interference, whereas the N-terminus as a TPH2 specific structure would facilitate the manipulation of the central nervous serotonergic system without exerting influence on the peripheral system. In further projects the existence of at least two protein kinase A phosphorylation sites could be verified, whereas the phosphorylation doesn’t seem to have any influence on the enzymatic activity, a high throughput assay for determination of TPH activity, based on a fluorometric principle, was developed, Tubulin beta2A was identified as a TPH2 interaction partner, the effect of a SNP in the Tph2 gene that decreases the TPH2 activity in vitro on the serotonin level and the behaviour of different mouse strains could be rated as insignificant by the generation of congenic mice und the expression of TPH1 mRNA was identified as a marker for endometrial cancer.
5

Cartographie du réseau d'interactions protéiques de la machinerie de transcription dans les cellules humaines

Rusu, Natalia 12 1900 (has links)
Les protéines sont les macromolécules les plus polyvalentes de la cellule. Elles jouent un rôle fondamental dans la majorité des processus biologiques à travers la formation de complexes multi-protéiques. Durant la transcription, une multitude de facteurs sont impliquées dans le contrôle de l’activité des complexes ARN polymérases. Notre laboratoire s’est intéressé au réseau d’interaction de la machinerie de transcription des ARN polymérases nucléaires, dans le but de mieux comprendre leurs mécanismes de régulation. Pour ce faire, une procédure protéomique comprenant la purification de complexes protéiques par affinité couplée à la spectrométrie de masse et à l’analyse bioinformatique a été développée. La méthode de purification TAP (Tandem Affinity Purification) a été adaptée pour permettre la purification de complexes protéiques solubles assemblés in vivo à partir de cellules humaines. L’objectif de mon projet de maîtrise était de purifier le complexe de l’ARN Pol I ainsi que de poursuivre l’expansion du réseau d’interactions protéine-protéine de la machinerie de transcription de l’ARN Pol II humaine. À l’aide des protéines POLR1E, TWISTNB, POLR2E, PFDN4, MBD2, XPA, CAND1 et PDCD5 étiquetées (TAP-tag) exprimées dans des lignées cellulaires ECR-293, plusieurs complexes protéiques solubles ont été purifiés et analysés par spectrométrie de masse. Les interactions protéiques ont été triées et validées bioinformatiquement pour donner en final une liste d’interactions ayant un haut degré de confiance à partir de laquelle des réseaux d’interactions protéine-protéine ont été créés. Le réseau créé au cours de ce projet connecte plusieurs composantes de la machinerie transcriptionnelle tels que les ARN Pol I, II et III, les complexes RPAP3/R2TP/prefoldin-like, TRiC/CCT, Mi-2/NuRD et des facteurs de transcription et de réparation de l’ADN. Ce type d’analyse nous a permis d’identifier et de caractériser de nouveaux régulateurs de la machinerie de transcription de l’ARN Pol I et II et de mieux comprendre son fonctionnement. / Proteins are the most versatile macromolecules of the cell. They play a fundamental role in the majority of biological processes through the formation of multiprotein complexes. During transcription, a multitude of factors are involved in the control of activity of RNA polymerases. Our laboratory was interested in defining the nuclear RNA polymerases transcription machinery interaction network to better understand their regulatory mechanisms. To do so, a proteomic procedure that allows affinity purification of protein complexes coupled to mass spectrometry and computational data analysis was developed. The tandem affinity purification procedure has been adapted for the purification of soluble protein complexes as they likely exist in live mammalian cells. The aim of my master project was to purify the RNA Pol I complex as well as to further pursue the expansion of the protein-protein interaction network of the human RNA Pol II transcription machinery. By using POLR1E, TWISTNB, POLR2E, PFDN4, MBD2, XPA, CAND1 and PDCD5 TAP – tagged proteins expressed in EcR-293 cell lines, multiple soluble protein complexes were purified and analyzed by mass spectrometry. Protein interactions have been sorted and validated computationally. High-confidence dataset of interactions were used to build the protein-protein interaction networks. The network created for this project connects several components of the transcriptional machinery such as RNA Pol I, II and III, RPAP3/R2TP/prefoldin-like, TRiC/CTC, Mi-2/NuRD complexes and DNA repair and transcription factors. This type of analysis allowed us to identify and characterize new regulators of RNA Pol I and II transcription machinery and to better understand its functioning.
6

Establishment of interaction partners of Plasmodium falciparum heat shock protein 70-x(PfHsp 70-x)

Monyai, Florina Semakaleng 18 May 2018 (has links)
MSc (Biochemistry) / Department of Biochemistry / Plasmodium falciparum is a unicellular protozoan parasite that causes malaria in humans. The parasite is passed to humans through mosquito bites and migrates to the liver before it infects host erythrocytes. It is at the erythrocytic stage of development that the parasite causes malaria pathology. Malaria is characterized by the modification of host erythrocytes making them cytoadherent. This is as a result of formation of protein complexes (knobs) on the surface of the erythrocyte. The knobs that develop on the surface of the erythrocyte are constituted by proteins of host origin as well as some proteins that the parasite ‘exports’ to the host cell surface. Nearly 550 parasite proteins are thought to be exported to the infected erythrocyte. Amongst the exported proteins is P. falciparum heat shock protein 70-x (PfHsp70-x). Hsp70 proteins are known to maintain protein homeostasis. Thus, the export of PfHsp70-x may be important for maintaining protein homeostasis in the host cell. PfHsp70-x is not essential for parasite survival although is implicated in the development of parasite virulence. This is possibly through its role in facilitating the trafficking of parasite proteins to the erythrocyte as well as supporting the formation of protein complexes that constitute the knobs that develop on the surface of the infected erythrocyte. The main objective of the current study was to investigate protein interaction partners of PfHsp70-x. It is generally believed that PfHsp70-x interacts with various proteins of human and parasite origin. Potential candidate interactors include its protein substrates, Hsp70 co-chaperones such as Hsp40 members, and human Hsp70-Hsp90 organizing protein (hHop). The establishment of the PfHsp70-x interactome would highlight the possible role of PfHsp70-x in the development of malaria pathogenicity. Based on bioinformatics analysis, PfHsp70-x was predicted to interact with some exported P. falciparum Hsp40s, hHop and human Hsp90 (hHsp90). Recombinant forms of PfHsp70-x (full length and a truncated form that lacks the C-terminal EEVN motif implicated in co-chaperone binding) were expressed in E. coli BL21 Star (DE3) cells. Recombinant hHop and hHsp70 were expressed in E. coli JM109 (DE3) cells. The proteins were successfully purified using nickel affinity chromatography. Co-affinity chromatography using recombinant PfHsp70-x and immuno-affinity chromatography using PfHsp70-x specific antibody did not confirm the direct interaction of PfHsp70-x with human Hop. However, the direct interaction of hHop and PfHsp70-x has previously been validated in vitro and the current bioinformatics data support ii the existence of such a complex. PfHsp70-x was not stable in the cell lysate that was prepared and this could explain why its interaction with hHop could not be ascertained. However, taken together the evidence from a previous independent study, and the predicted interaction of PfHsp70-x with human chaperones suggests cooperation of chaperone systems which possibly facilitates the folding and function of parasite proteins that are exported to the infected erythrocyte. / NRF
7

Systematic analysis of protein complexes involved in the human RNA polymerase II machinery

Al-Khoury, Racha 02 1900 (has links)
La transcription, la maturation d’ARN, et le remodelage de la chromatine sont tous des processus centraux dans l'interprétation de l'information contenue dans l’ADN. Bien que beaucoup de complexes de protéines formant la machinerie cellulaire de transcription aient été étudiés, plusieurs restent encore à identifier et caractériser. En utilisant une approche protéomique, notre laboratoire a purifié plusieurs composantes de la machinerie de transcription de l’ARNPII humaine par double chromatographie d’affinité "TAP". Cette procédure permet l'isolement de complexes protéiques comme ils existent vraisemblablement in vivo dans les cellules mammifères, et l'identification de partenaires d'interactions par spectrométrie de masse. Les interactions protéiques qui sont validées bioinformatiquement, sont choisies et utilisées pour cartographier un réseau connectant plusieurs composantes de la machinerie transcriptionnelle. En appliquant cette procédure, notre laboratoire a identifié, pour la première fois, un groupe de protéines, qui interagit physiquement et fonctionnellement avec l’ARNPII humaine. Les propriétés de ces protéines suggèrent un rôle dans l'assemblage de complexes à plusieurs sous-unités, comme les protéines d'échafaudage et chaperonnes. L'objectif de mon projet était de continuer la caractérisation du réseau de complexes protéiques impliquant les facteurs de transcription. Huit nouveaux partenaires de l’ARNPII (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 et CCT5) ont été purifiés par la méthode TAP, et la spectrométrie de masse a permis d’identifier de nouvelles interactions. Au cours des années, l’analyse par notre laboratoire des mécanismes de la transcription a contribué à apporter de nouvelles connaissances et à mieux comprendre son fonctionnement. Cette connaissance est essentielle au développement de médicaments qui cibleront les mécanismes de la transcription. / Genomes encode most of the functions necessary for cell growth and differentiation. Gene transcription, RNA processing, and chromatin remodeling are central processes in the interpretation of the information contained in genomic DNA. Although many protein complexes forming the cellular machinery that interprets mammalian genomes have been studied, a number of additional complexes remain to be identified and characterized. Using proteomic approaches, Dr. Benoit Coulombe’s laboratory purified many components of the RNAPII transcription machinery using tandem affinity purification (TAP), a procedure that allows the isolation of protein complexes as they likely exist in live mammalian cells, and the identification of interaction partners using mass spectrometry. High confidence interactions were selected computationally and used to draw the map of a network connecting many components of the mRNA transcriptional machinery. By applying this procedure, our lab has identified, for the first time, a group of proteins, that interacts both physically and functionally with human RNAPII, and whose properties suggest a role in the assembly of multi-subunit complexes, acting as RNAPII-specific scaffolding proteins and chaperones. The aim of my project was to continue the characterization of the network of protein complexes involving transcription factors, and thus, further pursuing our survey of protein complexes in whole cell extracts. Eight novel RNAPII interaction partners (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 and CCT5) were purified using the tandem affinity purification (TAP) method, and their interaction partners were identified by mass spectrometry. Over the years, our lab’s analysis of transcriptional regulation and mechanisms has contributed novel and important knowledge that provided better understanding of mRNA synthesis. This knowledge is paramount to the development of therapeutics that will target transcriptional mechanisms.
8

Systematic analysis of protein complexes involved in the human RNA polymerase II machinery

Al-Khoury, Racha 02 1900 (has links)
La transcription, la maturation d’ARN, et le remodelage de la chromatine sont tous des processus centraux dans l'interprétation de l'information contenue dans l’ADN. Bien que beaucoup de complexes de protéines formant la machinerie cellulaire de transcription aient été étudiés, plusieurs restent encore à identifier et caractériser. En utilisant une approche protéomique, notre laboratoire a purifié plusieurs composantes de la machinerie de transcription de l’ARNPII humaine par double chromatographie d’affinité "TAP". Cette procédure permet l'isolement de complexes protéiques comme ils existent vraisemblablement in vivo dans les cellules mammifères, et l'identification de partenaires d'interactions par spectrométrie de masse. Les interactions protéiques qui sont validées bioinformatiquement, sont choisies et utilisées pour cartographier un réseau connectant plusieurs composantes de la machinerie transcriptionnelle. En appliquant cette procédure, notre laboratoire a identifié, pour la première fois, un groupe de protéines, qui interagit physiquement et fonctionnellement avec l’ARNPII humaine. Les propriétés de ces protéines suggèrent un rôle dans l'assemblage de complexes à plusieurs sous-unités, comme les protéines d'échafaudage et chaperonnes. L'objectif de mon projet était de continuer la caractérisation du réseau de complexes protéiques impliquant les facteurs de transcription. Huit nouveaux partenaires de l’ARNPII (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 et CCT5) ont été purifiés par la méthode TAP, et la spectrométrie de masse a permis d’identifier de nouvelles interactions. Au cours des années, l’analyse par notre laboratoire des mécanismes de la transcription a contribué à apporter de nouvelles connaissances et à mieux comprendre son fonctionnement. Cette connaissance est essentielle au développement de médicaments qui cibleront les mécanismes de la transcription. / Genomes encode most of the functions necessary for cell growth and differentiation. Gene transcription, RNA processing, and chromatin remodeling are central processes in the interpretation of the information contained in genomic DNA. Although many protein complexes forming the cellular machinery that interprets mammalian genomes have been studied, a number of additional complexes remain to be identified and characterized. Using proteomic approaches, Dr. Benoit Coulombe’s laboratory purified many components of the RNAPII transcription machinery using tandem affinity purification (TAP), a procedure that allows the isolation of protein complexes as they likely exist in live mammalian cells, and the identification of interaction partners using mass spectrometry. High confidence interactions were selected computationally and used to draw the map of a network connecting many components of the mRNA transcriptional machinery. By applying this procedure, our lab has identified, for the first time, a group of proteins, that interacts both physically and functionally with human RNAPII, and whose properties suggest a role in the assembly of multi-subunit complexes, acting as RNAPII-specific scaffolding proteins and chaperones. The aim of my project was to continue the characterization of the network of protein complexes involving transcription factors, and thus, further pursuing our survey of protein complexes in whole cell extracts. Eight novel RNAPII interaction partners (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 and CCT5) were purified using the tandem affinity purification (TAP) method, and their interaction partners were identified by mass spectrometry. Over the years, our lab’s analysis of transcriptional regulation and mechanisms has contributed novel and important knowledge that provided better understanding of mRNA synthesis. This knowledge is paramount to the development of therapeutics that will target transcriptional mechanisms.

Page generated in 0.1357 seconds