• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shape-Guided Interactive Image Segmentation

Wang, Hui Unknown Date
No description available.
2

Haptic Image Exploration

Lareau, David 12 January 2012 (has links)
The haptic exploration of 2-D images is a challenging problem in computer haptics. Research on the topic has primarily been focused on the exploration of maps and curves. This thesis describes the design and implementation of a system for the haptic exploration of photographs. The system builds on various research directions related to assistive technology, computer haptics, and image segmentation. An object-level segmentation hierarchy is generated from the source photograph to be rendered haptically as a contour image at multiple levels-of-detail. A tool for the authoring of object-level hierarchies was developed, as well as an innovative type of user interaction by region selection for accurate and efficient image segmentation. According to an objective benchmark measuring how the new method compares with other interactive image segmentation algorithms shows that our region selection interaction is a viable alternative to marker-based interaction. The hierarchy authoring tool combined with precise algorithms for image segmentation can build contour images of the quality necessary for the images to be understood by touch with our system. The system was evaluated with a user study of 24 sighted participants divided in different groups. The first part of the study had participants explore images using haptics and answer questions about them. The second part of the study asked the participants to identify images visually after haptic exploration. Results show that using a segmentation hierarchy supporting multiple levels-of-detail of the same image is beneficial to haptic exploration. As the system gains maturity, it is our goal to make it available to blind users.
3

Haptic Image Exploration

Lareau, David 12 January 2012 (has links)
The haptic exploration of 2-D images is a challenging problem in computer haptics. Research on the topic has primarily been focused on the exploration of maps and curves. This thesis describes the design and implementation of a system for the haptic exploration of photographs. The system builds on various research directions related to assistive technology, computer haptics, and image segmentation. An object-level segmentation hierarchy is generated from the source photograph to be rendered haptically as a contour image at multiple levels-of-detail. A tool for the authoring of object-level hierarchies was developed, as well as an innovative type of user interaction by region selection for accurate and efficient image segmentation. According to an objective benchmark measuring how the new method compares with other interactive image segmentation algorithms shows that our region selection interaction is a viable alternative to marker-based interaction. The hierarchy authoring tool combined with precise algorithms for image segmentation can build contour images of the quality necessary for the images to be understood by touch with our system. The system was evaluated with a user study of 24 sighted participants divided in different groups. The first part of the study had participants explore images using haptics and answer questions about them. The second part of the study asked the participants to identify images visually after haptic exploration. Results show that using a segmentation hierarchy supporting multiple levels-of-detail of the same image is beneficial to haptic exploration. As the system gains maturity, it is our goal to make it available to blind users.
4

Graph-based Methods for Interactive Image Segmentation

Malmberg, Filip January 2011 (has links)
The subject of digital image analysis deals with extracting relevant information from image data, stored in digital form in a computer. A fundamental problem in image analysis is image segmentation, i.e., the identification and separation of relevant objects and structures in an image. Accurate segmentation of objects of interest is often required before further processing and analysis can be performed. Despite years of active research, fully automatic segmentation of arbitrary images remains an unsolved problem. Interactive, or semi-automatic, segmentation methods use human expert knowledge as additional input, thereby making the segmentation problem more tractable. The goal of interactive segmentation methods is to minimize the required user interaction time, while maintaining tight user control to guarantee the correctness of the results. Methods for interactive segmentation typically operate under one of two paradigms for user guidance: (1) Specification of pieces of the boundary of the desired object(s). (2) Specification of correct segmentation labels for a small subset of the image elements. These types of user input are referred to as boundary constraints and regional constraints, respectively. This thesis concerns the development of methods for interactive segmentation, using a graph-theoretic approach. We view an image as an edge weighted graph, whose vertex set is the set of image elements, and whose edges are given by an adjacency relation among the image elements. Due to its discrete nature and mathematical simplicity, this graph based image representation lends itself well to the development of efficient, and provably correct, methods. The contributions in this thesis may be summarized as follows: Existing graph-based methods for interactive segmentation are modified to improve their performance on images with noisy or missing data, while maintaining a low computational cost. Fuzzy techniques are utilized to obtain segmentations from which feature measurements can be made with increased precision. A new paradigm for user guidance, that unifies and generalizes regional and boundary constraints, is proposed. The practical utility of the proposed methods is illustrated with examples from the medical field.
5

Haptic Image Exploration

Lareau, David 12 January 2012 (has links)
The haptic exploration of 2-D images is a challenging problem in computer haptics. Research on the topic has primarily been focused on the exploration of maps and curves. This thesis describes the design and implementation of a system for the haptic exploration of photographs. The system builds on various research directions related to assistive technology, computer haptics, and image segmentation. An object-level segmentation hierarchy is generated from the source photograph to be rendered haptically as a contour image at multiple levels-of-detail. A tool for the authoring of object-level hierarchies was developed, as well as an innovative type of user interaction by region selection for accurate and efficient image segmentation. According to an objective benchmark measuring how the new method compares with other interactive image segmentation algorithms shows that our region selection interaction is a viable alternative to marker-based interaction. The hierarchy authoring tool combined with precise algorithms for image segmentation can build contour images of the quality necessary for the images to be understood by touch with our system. The system was evaluated with a user study of 24 sighted participants divided in different groups. The first part of the study had participants explore images using haptics and answer questions about them. The second part of the study asked the participants to identify images visually after haptic exploration. Results show that using a segmentation hierarchy supporting multiple levels-of-detail of the same image is beneficial to haptic exploration. As the system gains maturity, it is our goal to make it available to blind users.
6

Haptic Image Exploration

Lareau, David January 2012 (has links)
The haptic exploration of 2-D images is a challenging problem in computer haptics. Research on the topic has primarily been focused on the exploration of maps and curves. This thesis describes the design and implementation of a system for the haptic exploration of photographs. The system builds on various research directions related to assistive technology, computer haptics, and image segmentation. An object-level segmentation hierarchy is generated from the source photograph to be rendered haptically as a contour image at multiple levels-of-detail. A tool for the authoring of object-level hierarchies was developed, as well as an innovative type of user interaction by region selection for accurate and efficient image segmentation. According to an objective benchmark measuring how the new method compares with other interactive image segmentation algorithms shows that our region selection interaction is a viable alternative to marker-based interaction. The hierarchy authoring tool combined with precise algorithms for image segmentation can build contour images of the quality necessary for the images to be understood by touch with our system. The system was evaluated with a user study of 24 sighted participants divided in different groups. The first part of the study had participants explore images using haptics and answer questions about them. The second part of the study asked the participants to identify images visually after haptic exploration. Results show that using a segmentation hierarchy supporting multiple levels-of-detail of the same image is beneficial to haptic exploration. As the system gains maturity, it is our goal to make it available to blind users.
7

Redução no esforço de interação em segmentação de imagens digitais através de aprendizagem computacional / Reducing the interaction effort in digital image segmentation through machine learning

Klava, Bruno 08 October 2014 (has links)
A segmentação é um passo importante em praticamente todas as tarefas que envolvem processamento de imagens digitais. Devido à variedade de imagens e diferentes necessidades da segmentação, a automação da segmentação não é uma tarefa trivial. Em muitas situações, abordagens interativas, nas quais o usuário pode intervir para guiar o processo de segmentação, são bastante úteis. Abordagens baseadas na transformação watershed mostram-se adequadas para a segmentação interativa de imagens: o watershed a partir de marcadores possibilita que o usuário marque as regiões de interesse na imagem; o watershed hierárquico gera uma hierarquia de partições da imagem sendo analisada, hierarquia na qual o usuário pode navegar facilmente e selecionar uma particular partição (segmentação). Em um trabalho prévio, propomos um método que integra as duas abordagens de forma que o usuário possa combinar os pontos fortes dessas duas formas de interação intercaladamente. Apesar da versatilidade obtida ao se integrar as duas abordagens, as hierarquias construídas dificilmente contêm partições interessantes e o esforço de interação necessário para se obter um resultado desejado pode ser muito elevado. Nesta tese propomos um método, baseado em aprendizagem computacional, que utiliza imagens previamente segmentadas para tentar adaptar uma dada hierarquia de forma que esta contenha partições mais próximas de uma partição de interesse. Na formulação de aprendizagem computacional, diferentes características da imagem são associadas a possíveis contornos de regiões, e esses são classificados como contornos que devem ou não estar presentes na partição final por uma máquina de suporte vetorial previamente treinada. A hierarquia dada é adaptada de forma a conter uma partição que seja consistente com a classificação obtida. Essa abordagem é particularmente interessante em cenários nos quais lotes de imagens similares ou sequências de imagens, como frames em sequências de vídeo ou cortes produzidas por exames de diagnóstico por imagem, precisam ser segmentadas. Nesses casos, é esperado que, a cada nova imagem a ser segmentada, o esforço de interação necessário para se obter a segmentação desejada seja reduzido em relação ao esforço que seria necessário com o uso da hierarquia original. Para não dependermos de experimentos com usuários na avaliação da redução no esforço de interação, propomos e utilizamos um modelo de interação que simula usuários humanos no contexto de segmentação hierárquica. Simulações deste modelo foram comparadas com sequências de interação observadas em experimentos com usuários humanos. Experimentos com diferentes lotes e sequências de imagens mostram que o método é capaz de reduzir o esforço de interação. / Segmentation is an important step in nearly all tasks involving digital image processing. Due to the variety of images and segmentation needs, automation of segmentation is not a trivial task. In many situations, interactive approaches in which the user can intervene to guide the segmentation process, are quite useful. Watershed transformation based approaches are suitable for interactive image segmentation: the watershed from markers allows the user to mark the regions of interest in the image; the hierarchical watershed generates a hierarchy of partitions of the image being analyzed, hierarchy in which the user can easily navigate and select a particular partition (segmentation). In a previous work, we have proposed a method that integrates the two approaches so that the user can combine the strong points of these two forms of interaction interchangeably. Despite the versatility obtained by integrating the two approaches, the built hierarchies hardly contain interesting partitions and the interaction effort needed to obtain a desired outcome can be very high. In this thesis we propose a method, based on machine learning, that uses images previously segmented to try to adapt a given hierarchy so that it contains partitions closer to the partition of interest. In the machine learning formulation, different image features are associated to the possible region contours, and these are classified as ones that must or must not be present in the final partition by a previously trained support vector machine. The given hierarchy is adapted to contain a partition that is consistent with the obtained classification. This approach is particularly interesting in scenarios where batches of similar images or sequences of images, such as frames in video sequences or cuts produced by imaging diagnosis procedures, need to be segmented. In such cases, it is expected that for each new image to be segmented, the interaction effort required to achieve the desired segmentation is reduced relative to the effort that would be required when using the original hierarchy. In order to do not depend on experiments with users in assessing the reduction in interaction effort, we propose and use an interaction model that simulates human users in the context of hierarchical segmentation. Simulations of this model were compared with interaction sequences observed in experiments with humans users. Experiments with different bacthes and image sequences show that the method is able to reduce the interaction effort.
8

Redução no esforço de interação em segmentação de imagens digitais através de aprendizagem computacional / Reducing the interaction effort in digital image segmentation through machine learning

Bruno Klava 08 October 2014 (has links)
A segmentação é um passo importante em praticamente todas as tarefas que envolvem processamento de imagens digitais. Devido à variedade de imagens e diferentes necessidades da segmentação, a automação da segmentação não é uma tarefa trivial. Em muitas situações, abordagens interativas, nas quais o usuário pode intervir para guiar o processo de segmentação, são bastante úteis. Abordagens baseadas na transformação watershed mostram-se adequadas para a segmentação interativa de imagens: o watershed a partir de marcadores possibilita que o usuário marque as regiões de interesse na imagem; o watershed hierárquico gera uma hierarquia de partições da imagem sendo analisada, hierarquia na qual o usuário pode navegar facilmente e selecionar uma particular partição (segmentação). Em um trabalho prévio, propomos um método que integra as duas abordagens de forma que o usuário possa combinar os pontos fortes dessas duas formas de interação intercaladamente. Apesar da versatilidade obtida ao se integrar as duas abordagens, as hierarquias construídas dificilmente contêm partições interessantes e o esforço de interação necessário para se obter um resultado desejado pode ser muito elevado. Nesta tese propomos um método, baseado em aprendizagem computacional, que utiliza imagens previamente segmentadas para tentar adaptar uma dada hierarquia de forma que esta contenha partições mais próximas de uma partição de interesse. Na formulação de aprendizagem computacional, diferentes características da imagem são associadas a possíveis contornos de regiões, e esses são classificados como contornos que devem ou não estar presentes na partição final por uma máquina de suporte vetorial previamente treinada. A hierarquia dada é adaptada de forma a conter uma partição que seja consistente com a classificação obtida. Essa abordagem é particularmente interessante em cenários nos quais lotes de imagens similares ou sequências de imagens, como frames em sequências de vídeo ou cortes produzidas por exames de diagnóstico por imagem, precisam ser segmentadas. Nesses casos, é esperado que, a cada nova imagem a ser segmentada, o esforço de interação necessário para se obter a segmentação desejada seja reduzido em relação ao esforço que seria necessário com o uso da hierarquia original. Para não dependermos de experimentos com usuários na avaliação da redução no esforço de interação, propomos e utilizamos um modelo de interação que simula usuários humanos no contexto de segmentação hierárquica. Simulações deste modelo foram comparadas com sequências de interação observadas em experimentos com usuários humanos. Experimentos com diferentes lotes e sequências de imagens mostram que o método é capaz de reduzir o esforço de interação. / Segmentation is an important step in nearly all tasks involving digital image processing. Due to the variety of images and segmentation needs, automation of segmentation is not a trivial task. In many situations, interactive approaches in which the user can intervene to guide the segmentation process, are quite useful. Watershed transformation based approaches are suitable for interactive image segmentation: the watershed from markers allows the user to mark the regions of interest in the image; the hierarchical watershed generates a hierarchy of partitions of the image being analyzed, hierarchy in which the user can easily navigate and select a particular partition (segmentation). In a previous work, we have proposed a method that integrates the two approaches so that the user can combine the strong points of these two forms of interaction interchangeably. Despite the versatility obtained by integrating the two approaches, the built hierarchies hardly contain interesting partitions and the interaction effort needed to obtain a desired outcome can be very high. In this thesis we propose a method, based on machine learning, that uses images previously segmented to try to adapt a given hierarchy so that it contains partitions closer to the partition of interest. In the machine learning formulation, different image features are associated to the possible region contours, and these are classified as ones that must or must not be present in the final partition by a previously trained support vector machine. The given hierarchy is adapted to contain a partition that is consistent with the obtained classification. This approach is particularly interesting in scenarios where batches of similar images or sequences of images, such as frames in video sequences or cuts produced by imaging diagnosis procedures, need to be segmented. In such cases, it is expected that for each new image to be segmented, the interaction effort required to achieve the desired segmentation is reduced relative to the effort that would be required when using the original hierarchy. In order to do not depend on experiments with users in assessing the reduction in interaction effort, we propose and use an interaction model that simulates human users in the context of hierarchical segmentation. Simulations of this model were compared with interaction sequences observed in experiments with humans users. Experiments with different bacthes and image sequences show that the method is able to reduce the interaction effort.
9

Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagens

Casaca, Wallace Correa de Oliveira 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.
10

Graph Laplacian for spectral clustering and seeded image segmentation / Estudo do Laplaciano do grafo para o problema de clusterização espectral e segmentação interativa de imagens

Wallace Correa de Oliveira Casaca 05 December 2014 (has links)
Image segmentation is an essential tool to enhance the ability of computer systems to efficiently perform elementary cognitive tasks such as detection, recognition and tracking. In this thesis we concentrate on the investigation of two fundamental topics in the context of image segmentation: spectral clustering and seeded image segmentation. We introduce two new algorithms for those topics that, in summary, rely on Laplacian-based operators, spectral graph theory, and minimization of energy functionals. The effectiveness of both segmentation algorithms is verified by visually evaluating the resulting partitions against state-of-the-art methods as well as through a variety of quantitative measures typically employed as benchmark by the image segmentation community. Our spectral-based segmentation algorithm combines image decomposition, similarity metrics, and spectral graph theory into a concise and powerful framework. An image decomposition is performed to split the input image into texture and cartoon components. Then, an affinity graph is generated and weights are assigned to the edges of the graph according to a gradient-based inner-product function. From the eigenstructure of the affinity graph, the image is partitioned through the spectral cut of the underlying graph. Moreover, the image partitioning can be improved by changing the graph weights by sketching interactively. Visual and numerical evaluation were conducted against representative spectral-based segmentation techniques using boundary and partition quality measures in the well-known BSDS dataset. Unlike most existing seed-based methods that rely on complex mathematical formulations that typically do not guarantee unique solution for the segmentation problem while still being prone to be trapped in local minima, our segmentation approach is mathematically simple to formulate, easy-to-implement, and it guarantees to produce a unique solution. Moreover, the formulation holds an anisotropic behavior, that is, pixels sharing similar attributes are preserved closer to each other while big discontinuities are naturally imposed on the boundary between image regions, thus ensuring better fitting on object boundaries. We show that the proposed approach significantly outperforms competing techniques both quantitatively as well as qualitatively, using the classical GrabCut dataset from Microsoft as a benchmark. While most of this research concentrates on the particular problem of segmenting an image, we also develop two new techniques to address the problem of image inpainting and photo colorization. Both methods couple the developed segmentation tools with other computer vision approaches in order to operate properly. / Segmentar uma image é visto nos dias de hoje como uma prerrogativa para melhorar a capacidade de sistemas de computador para realizar tarefas complexas de natureza cognitiva tais como detecção de objetos, reconhecimento de padrões e monitoramento de alvos. Esta pesquisa de doutorado visa estudar dois temas de fundamental importância no contexto de segmentação de imagens: clusterização espectral e segmentação interativa de imagens. Foram propostos dois novos algoritmos de segmentação dentro das linhas supracitadas, os quais se baseiam em operadores do Laplaciano, teoria espectral de grafos e na minimização de funcionais de energia. A eficácia de ambos os algoritmos pode ser constatada através de avaliações visuais das segmentações originadas, como também através de medidas quantitativas computadas com base nos resultados obtidos por técnicas do estado-da-arte em segmentação de imagens. Nosso primeiro algoritmo de segmentação, o qual ´e baseado na teoria espectral de grafos, combina técnicas de decomposição de imagens e medidas de similaridade em grafos em uma única e robusta ferramenta computacional. Primeiramente, um método de decomposição de imagens é aplicado para dividir a imagem alvo em duas componentes: textura e cartoon. Em seguida, um grafo de afinidade é gerado e pesos são atribuídos às suas arestas de acordo com uma função escalar proveniente de um operador de produto interno. Com base no grafo de afinidade, a imagem é então subdividida por meio do processo de corte espectral. Além disso, o resultado da segmentação pode ser refinado de forma interativa, mudando-se, desta forma, os pesos do grafo base. Experimentos visuais e numéricos foram conduzidos tomando-se por base métodos representativos do estado-da-arte e a clássica base de dados BSDS a fim de averiguar a eficiência da metodologia proposta. Ao contrário de grande parte dos métodos existentes de segmentação interativa, os quais são modelados por formulações matemáticas complexas que normalmente não garantem solução única para o problema de segmentação, nossa segunda metodologia aqui proposta é matematicamente simples de ser interpretada, fácil de implementar e ainda garante unicidade de solução. Além disso, o método proposto possui um comportamento anisotrópico, ou seja, pixels semelhantes são preservados mais próximos uns dos outros enquanto descontinuidades bruscas são impostas entre regiões da imagem onde as bordas são mais salientes. Como no caso anterior, foram realizadas diversas avaliações qualitativas e quantitativas envolvendo nossa técnica e métodos do estado-da-arte, tomando-se como referência a base de dados GrabCut da Microsoft. Enquanto a maior parte desta pesquisa de doutorado concentra-se no problema específico de segmentar imagens, como conteúdo complementar de pesquisa foram propostas duas novas técnicas para tratar o problema de retoque digital e colorização de imagens.

Page generated in 0.1693 seconds