1 |
Characterizing the Light Scattering Properties of Exoplanet Cloud Analogs Through Laboratory and Modeling EndeavorsColin David Hamill (20360691) 13 December 2024 (has links)
<p dir="ltr">A better understanding of how aerosols interact with light is imperative as space telescopes unveil more about exoplanet atmospheres. To better understand how realistically shaped cloud condensates scatter light, I updated and tested the Exoplanet Cloud Ensemble Scattering System (ExCESS), which measures the scattering intensity and polarization of an ensemble of particles with respect to scattering angle at visible wavelengths. I used ExCESS to measure the scattering of cubic and irregular cuboid potassium chloride (KCl) particles, a likely cloud species in warm (T = 500 - 1000 K) mini-Neptune exoplanets like GJ 1214b. I then outline my changes made to the radiative transfer model, <i>PICASO</i>, that allow for a user-friendly and accurate method to compute reflected light phase curves. With this new capability, I explore the reflected intensity of Kepler-7b assuming different cloud condensates and particle sedimentation efficiencies, and I find that the cloud condensates Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> may contribute more to reflected light intensity than previously expected for hot Jupiters with heterogeneous dayside temperatures. In the final chapter, I input the laboratory data from ExCESS into the scattering functionality of <i>PICASO</i>. I compare single-wavelength (532 nm) reflected light phase curves of GJ 1214b created with rough scattering approximations to those created with robust non-spherical scattering approximations (ExCESS measurements and discrete dipole approximation). I find that two term Henyey-Greenstein phase functions, which act as a rough approximation to cloud scattering, may be useful for estimating the scattering of cubic and irregular particle shapes when rigorous laboratory measurements or non-spherical scattering approximations are unavailable.</p>
|
Page generated in 0.0872 seconds