171 |
Nastavenie skríningových metód na nájdenie nových regulátorov aktivity fosfoglykolát fosfatázy. / Establishment of screening methods to find new regulators of the activity of phosphoglycolate phosphataseTroppová, Eva January 2018 (has links)
Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmacology & Toxicology Student: Eva Troppová Supervisor: PharmDr. Marie Vopršalová, CSc. Specialized supervisor: Prof. Dr. Antje Gohla Title of diploma thesis: Establishment of screening methods to find new regulators of the activity of phosphoglycolate phosphatase This work deals with the siRNA-based genomic screening for the modification of phosphoglycolate phosphatase (PGP) activity. 235 proteins were affected by transient transfection of siRNAs in vitro. Each siRNA was used in duplicates and the control was carried out by two control siRNAs. After downregulation of protein by siRNA PGP activity was evaluated, whether any modifications of PGP activity have occurred. PGP was the main research target. The main goal of this study before the screening was to set up a method, to create a reliable protocol. The whole study was 96 plate well. It was necessary to find the right conditions to measure PGP activity in two cell types (HEK AD 293 and Hep G2). Subsequently, optimal conditions were set up to influence expression of the protein. The method was optimalized using PGP siRNAs and 2 types of transfection reagents were tested. During our study the following methods were used: PGP activity assay, Bicinchoninic acid...
|
172 |
Endogenous Small RNAs in the <em>Drosophila</em> Soma: A DissertationGhildiyal, Megha 11 March 2010 (has links)
Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNAs have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, modes of target regulation and in the biological pathways they regulate.
Historically, siRNAs were believed to arise only from exogenous double-stranded RNA triggers in organisms lacking RNA-dependent RNA polymerases. However, the discovery of endogenous siRNAs in flies expanded the biological significance of siRNAs beyond viral defense. By high throughput sequencing we identified Drosophila endosiRNAs as 21 nt small RNAs, bearing a 2´-O-methyl group at their 3´ ends, and depleted in dicer-2 mutants.
Methylation of small RNAs at the 3´ end in the soma, is a consequence of assembly into a mature Argonaute2-RNA induced silencing complex. In addition to endo-siRNAs, we observed certain miRNAs or their miRNA* partners loading into Argonaute2. We discovered, that irrespective of its biogenesis, a miRNA duplex can load into either Argonaute (Ago1 or Ago2), contingent on its structural and sequence features, followed by assignment of one of the strands in the duplex as the functional or guide strand. Usually the miRNA strand is selected as the guide in complex with Ago1 and miRNA* strand with Ago2.
In our efforts towards finding 3´ modified small RNAs in the fly soma, we also discovered 24-28nt small RNAs in certain fly genotypes, particularly ago2 and dcr-2mutants. 24-28nt small RNAs share many features with piRNAs present in the germline, and a significant fraction of the 24-28nt small RNAs originate from similar transposon clusters as somatic endo-siRNAs. Therefore the same RNA can potentially act as a precursor for both endo-siRNA and piRNA-like small RNA biogenesis. We are analyzing the genomic regions that spawn somatic small RNAs in order to understand the triggers for their production. Ultimately, we want to attain insight into the underlying complexity that interconnects these small RNA pathways.
Dysregulation of small RNAs leads to defects in germline development, organogenesis, cell growth and differentiation. This thesis research provides vital insight into the network of interactions that fine-tune the small RNA pathways. Understanding the flow of information between the small RNA pathways, a great deal of which has been revealed only in the recent years, will help us comprehend how the pathways compete and collaborate with each other, enabling each other’s optimum function.
|
173 |
Drosophila piRNA Function in Genome Maintenance, Telomere Protection and Genome Evolution: A DissertationKhurana, Jaspreet S. 26 October 2010 (has links)
Upon fertilization, the early embryo sustains most of the cellular processes using the maternally deposited reserves in the egg itself until the zygotic gene expression takes charge. Among the plethora of essential components provided by the mother are small non-coding RNAs called PIWI-interacting RNAs (piRNAs), which provide immunity to the zygote against transposon challenge. In this thesis, I have presented three different functions of piRNAs in Drosophila melanogaster- in maintenance of genomic integrity, telomere protection and their role as an adaptive immune system against genomic parasites.
In Chapter 2, I have described the phenotypic effects of the loss of piRNA function in early embryos. The mutations affecting the piRNA pathway are known to cause embryonic lethality. To describe this lethality in detail, I have shown that all the characterized piRNA mutants show compromised zygotic genomic integrity during early embryogenesis. In addition, two piRNA pathway components, Aubergine (Aub) and Armitage (Armi) are also required for telomere resolution during early embryogenesis. Aub and Armi recruit telomeric protection complex proteins, HOAP and HP1, to the telomeric ends and thus avoid activation of the Non-homologous end joining (NHEJ) DNA repair pathway at the telomeres.
There are about 120 transposon families in Drosophila melanogaster and piRNA pathway mutations cause activation of many of the resident transposons in the genome. In Chapter 3, I have described the effects of infection by a single transposon, P-element, in naïve strains by introduction through the zygote. Activation of the P-element leads to desilencing of unrelated transposons, causing accumulation of germline DNA damage which is linked to severely reduced fertility in the hybrid females. However, there is partial restoration of fertility as the hybrid progeny age, which correlates with P-element piRNA production and thus P-element silencing.
Additionally, a number of transposons mobilize into piRNA generating heterochromatic clusters in the genome, and these insertions are stably inherited in the progeny. Collectively our data shows that piRNA production can be triggered in the adults in an absence of maternal contribution and that piRNAs serve as an adaptive immune system which helps resolve an internal genetic conflict between the host and the parasite.
In an effort to understand the phenotypic effects of piRNA dysfunction in Drosophila, we have uncovered new exciting roles for piRNAs in development and presented evidence how transposons can act as architects in restructuring the host genome.
|
174 |
Molecular Mechanisms of piRNA Biogenesis and Function in Drosophila: A DissertationLi, Chengjian 05 April 2011 (has links)
In the Drosophila germ line, PIWI-interacting RNAs (piRNAs) ensure genomic stability by silencing endogenous selfish genetic elements such as retrotransposons and repetitive sequences.
We examined the genetic requirements for the biogenesis and function of piRNAs in both female and male germ line. We found that piRNAs function through the PIWI, rather than the AGO, family Argonaute proteins, and the production of piRNAs requires neither microRNA (miRNA) nor small interfering RNA (siRNA) pathway machinery. These findings allowed the discovery of the third conserved small RNA silencing pathway, which is distinct from both the miRNA and RNAi pathways in its mechanisms of biogenesis and function.
We also found piRNAs in flies are modified. We determined that the chemical structure of the 3´-terminal modification is a 2´-O-methyl group, and also demonstrated that the same modification occurs on the 3´ termini of siRNAs in flies. Furthermore, we identified the RNA methyltransferase Drosophila Hen1, which catalyzes 2´-O-methylation on both siRNAs and piRNAs. Our data suggest that 2´-O-methylation by Hen1 is the final step of biogenesis of both the siRNA pathway and piRNA pathway.
Studies from the Hannon Lab and the Siomi Lab suggest a ping-pong amplification loop for piRNA biogenesis and function in the Drosophila germline. In this model, an antisense piRNA, bound to Aubergine or Piwi, triggers production of a sense piRNA bound to the PIWI protein Argonaute3 (Ago3). In turn, the new piRNA is envisioned to produce a second antisense piRNA. We isolated the loss-of-function mutations in ago3, allowing a direct genetic test of this model. We found that Ago3 acts to amplify piRNA pools and to enforce on them an antisense bias, increasing the number of piRNAs that can act to silence transposons. Moreover, we also discovered a second Ago3-independent piRNA pathway in somatic ovarian follicle cells, suggesting a role for piRNAs beyond the germ line.
|
175 |
Molecular Mechanisms of Endocytosis: Trafficking and Functional Requirements for the Transferrin Receptor, Small Interfering RNAs and Dopamine Transporter: A DissertationNavaroli, Deanna M. 30 April 2012 (has links)
Endocytosis is an essential function of eukaryotic cells, providing crucial nutrients and playing key roles in interactions of the plasma membrane with the environment. The classical view of the endocytic pathway, where vesicles from the plasma membrane fuse with a homogenous population of early endosomes from which cargo is sorted, has recently been challenged by the finding of multiple subpopulations of endosomes. These subpopulations vary in their content of phosphatidylinositol 3- phosphate (PI3P) and Rab binding proteins. The role of these endosomal subpopulations is unclear, as is the role of multiple PI3P effectors, which are ubiquitously expressed and highly conserved. One possibility is that the different subpopulations represent stages in the maturation of the endocytic pathway. Alternatively, endosome subpopulations may be specialized for different functions, such as preferential trafficking of specific endocytosed cargo. To determine whether specific receptors are targeted to distinct populations of endosomes, we have built a platform for total internal reflection fluorescence (TIRF) microscopy coupled with structured illumination capabilities named TESM (TIRF Epifluorescence Structured light Microscope.) In this study, TESM, along with standard biochemical and molecular biological tools, was used to analyze the dynamic distribution of two highly conserved Rab5 and PI3P effectors, EEA1 and Rabenosyn-5, and systematically study the trafficking of transferrin. Rabenosyn-5 is necessary for proper expression of the transferrin receptor as well as internalization and recycling of transferrin-transferrin receptor complexes. Results of combining TIRF with structured light Epifluorescence (SLE) indicate that the endogenous populations of EEA1 and Rabenoysn-5 are both distinct and partially overlapping.
The application of antisense oligonucleotides as potential therapeutic agents requires effective methods for their delivery to the cytoplasm of target cells. In collaboration with RXi Pharmaceuticals we show the efficient cellular uptake of the antisense oligonucleotide sd-rxRNA® in the absence of delivery vehicle or protein carrier. In this study TIRF, SLE, and biochemical approaches were utilized to determine whether sd-rxRNA traffics and functions along specific endosomal pathways. Sd-rxRNA was found to traffic along the degradative pathway and require EEA1 to functionally silence its target. These new findings will help define the cellular pathways involved in RNA silencing.
Neurotransmitter reuptake and reuse by neurotransmitter transport proteins is fundamental to transmitter homeostasis and synaptic signaling. In order to understand how trafficking regulates transporters in the brain and how this system may be disregulated in monoamine-related pathologies, the transporter internalization signals and their molecular partners must be defined. We utilized a yeast two-hybrid system to identify proteins that interact with the dopamine transporter (DAT) endocytic signal. The small, membrane associated, GTPase Rin was determined to specifically and functionally interact with the DAT endocytic signal, regulating constitutive and protein kinase C (PKC) – stimulated DAT endocytosis. The results presented in this study provide new insights into functions and components of endocytosis and enhance the understanding of endocytic organization.
|
176 |
Genetically Engineered Small Extracellular Vesicles to Deliver Alpha-Synuclein siRNA Across the Blood-Brain-Barrier to Treat Parkinson’s DiseaseSosa Miranda, Carmen Daniela 04 January 2022 (has links)
Small extracellular vesicles (small EVs) are endogenous membrane-enclosed nanocarriers released from essentially all cells. They have been shown to carry proteins, lipids, nucleic acids to transmit biological signals throughout the body, including to the brain. Some evidence has suggested that small EVs can cross the blood-brain barrier (BBB), moving from the peripheral circulation to the central nervous system (CNS). The BBB is a dynamic barrier that regulates molecular trafficking between the peripheral circulation and the CNS. As a result, small EVs have attracted attention for their potential as a novel delivery platform for nucleic acid-based therapeutics across the BBB. Silencing RNAs (siRNAs) are a potent drug class but using “naked” siRNA is not feasible due to their short half-life, vulnerability to degradation and low penetration in cells. Despite the excitement for the development of small EV-based therapeutics, their clinical development is hampered by the lack of reliable methods for packing therapeutics into them. Reshke et al. has shown that cells can be genetically engineered to produce customizable small EVs packaged with siRNA against any protein by integrating the siRNA sequence into the pre- miR-451 structure. Mounting evidence has established that in a misfolded state, α-synuclein becomes insoluble and phosphorylated to form intracellular inclusions in neurons (known as Lewy bodies) which leads to Parkinson’s disease (PD) pathogenesis. Given that increased α-synuclein expression causes familial and idiopathic PD, decreasing its synthesis by using siRNA is an attractive therapeutic strategy. Here, we genetically engineered cells to produce small EVs packaged with siRNA against α-synuclein integrated in the pre-miR451 backbone, tested their ability to cross an in vitro BBB, and deliver its cargo to silence endogenous α-synuclein in neuron- like cells. The therapeutic potential of α-synuclein siRNA delivery by these small EVs was demonstrated by the strong mRNA (60-70%) and protein knockdown (43%) of α-synuclein in neuron-like cells. We also demonstrated that approximately at 4% and 2%, respectively of small EVs-derived from human brain endothelial cells (hCMEC/D3) and human embryonic kidney (HEK293T) were transported cross the in vitro BBB model. Interestingly, we observed that small EVs-derived from HEK293T deliver their cargo to induced brain endothelial cells (iBECs) (~74% α-synuclein mRNA reduction) but their rate of transport across BBB was lower and did not reduce α-synuclein mRNA expression in neuron-like cells, seeded on the far side of the BBB. Small EVs- derived from hCMEC/D3 reduced α-synuclein mRNA (40%) in neuron-like cells across the BBB model. This finding suggests that small EVs derived from different cell sources can undergo different intracellular trafficking routes, providing various opportunities to influence the efficiency of delivery and fate of intracellular cargo. Using small EVs-derived from hCMEC/D3, two different routes of administration, a single bolus intravenous (IV) or intra-carotid (ICD) injection, showed small EVs largely accumulated in the liver, spleen, small intestines and kidneys; and only a small amount of small EVs were detected in the brain. These results indicate that human brain endothelial cells may serve as a promising cell source for CNS treatments based on small EVs.
|
177 |
Luminescence-Based MicroRNA Detection MethodsCissell, Kyle A. 27 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / MicroRNAs (miRNA) are short, 18-24 nucleotide long noncoding RNAs. These small RNAs, which are initially transcribed in the nucleus, are transported into the cell cytoplasm where they regulate protein translation either through direct cleavage of mRNA, or indirect inhibition through binding to mRNA and disrupting the protein translation machinery. Recently, miRNAs have gained much attention due to their implication in numerous diseases and cancers. It has been found that heightened or lowered levels of miRNA in diseased cells vs. healthy cells are linked to disease progression. It is therefore immensely important to be able to detect these small molecules. Current detection methods of Northern blotting, microarrays, and qRT-PCR suffer from drawbacks including low sensitivity, a lack of simplicity, being semi-quantitative in nature, time-consuming, and requiring expensive instruments. This work aims to develop novel miRNA technologies which will address these above problems. Bioluminescent labels are promising alternatives to current methods of miRNA detection. Bioluminescent labels are relatively small, similar in size to fluorescent proteins, and they emit very intense signals upon binding to their substrate. Bioluminescent labels are advantageous to fluorescent labels in that they do not require an external excitation source, rather, the excitation energy is supplied through a biochemical reaction. Therefore, background signal due to excitation is eliminated. They also have the advantage of being produced in large amounts through bacterial expression.
Four miRNA detection methods are presented which utilize luminescence-based methods. Three employ Renilla luciferase, a bioluminescent protein, and one is based on fluorescence. The presented methods are capable of detecting miRNA from the picomole (nanomolar) level down to the femtomole (picomolar) level. These methods are rapid, sensitive, simple, and quantitative, can be employed in complex matrices, and do not require expensive instruments. All methods are hybridization-based and do not require amplification steps.
|
178 |
Genome-Wide Regulation of Both Canonical and Non-canonical RNA-directed DNA Methylation Mechanisms in <i>Arabidopsis thaliana</i>Panda, Kaushik Kant January 2017 (has links)
No description available.
|
179 |
Transgenic resistance against Citrus tristeza virus (CTV) and analysis of the viral p23 protein as pathogenicity determinant in citrusSoler Calvo, Nuria 02 September 2013 (has links)
El virus de la tristeza de los cítricos (Citrus tristeza virus; CTV) es el agente causal de unas de
las enfermedades virales de los árboles cítricos más devastadoras en el mundo. CTV está restringido al
floema en su huésped cítrico natural, y ha desarrollado tres proteínas supresoras de silenciamiento que
actúan a nivel intra-(p23 y p20) e intercelular (p20 y p25) para superar la fuerte defensa antiviral del
huésped. La interferencia de RNA, una aproximación basada en el uso de dsRNA para desencadenar el
silenciamiento de RNA, ha sido utilizada ampliamente para generar plantas transgénicas resistentes a
virus. Considerando el importante papel de p23, p20 y p25 en la patogénesis de CTV, hemos
transformado plantas de lima Mexicana con un vector intrón-horquilla que porta la secuencia completa en
versión no traducible de los genes p25, p20, p23 y el extremo 3¿-UTR de la cepa T36 de CTV, para
intentar silenciar su expresión en células infectadas.
Se ha observado resistencia completa a la infección viral en tres líneas transgénicas,
manteniéndose todas sus propagaciones asintomáticas y libres de virus tras ser inoculadas mediante
injerto con CTV-T36, tanto en el portainjertos no transgénico como directamente sobre la variedad
transgénica. La acumulación de siRNA derivados del transgén fue necesaria pero no suficiente para lograr
resistencia frente a CTV en las plantas. Al inocular propagaciones de las líneas transgénicas inmunes con
una cepa de CTV divergente, la resistencia fue parcialmente superada, destacando la importancia de la
identidad de secuencia en el mecanismo subyacente a la interferencia de RNA. Este trabajo es el primero
en que se consigue resistencia completa a CTV en un huésped cítrico muy sensible, actuando
simultáneamente sobre los tres supresores virales de silenciamiento mediante interferencia de RNA. La
proteína p23 codificada por el virus es además un importante factor de patogenicidad. La expresión
ectópica de p23 en plantas de cítricos induce aberraciones fenológicas semejantes a síntomas de CTV.
Para estudiar en más detalle el papel de p23 en la patogénesis de CTV, se ha sobre-expresado en lima
Mexicana el gen p23 de CTV T36 y tres versiones truncadas del mismo bajo el control del promotor 35S
del virus del mosaico de la coliflor (Cauliflower mosaic virus). Solo la versión truncada, que expresa los
aminoácidos del 1 al 157 (p23-¿157) indujo síntomas similares a los producidos por CTV, aunque más
suaves que los inducidos por la expresión de la proteína p23 entera (209 aminoácidos), permitiendo
delimitar la región responsable de la patogénesis de p23 en cítricos a un fragmento de 157 aminoácidos
que incluye el dedo de zinc y los motivos básicos flanqueantes de la proteína. La actividad de p23 como
supresor de silenciamiento de RNA en N. benthamiana se perdía en todos los mutantes de p23 probados,
lo cual indica que la supresión de silenciamiento implica a la mayoría de las regiones de la proteína. Para
profundizar más en el papel de p23 en la patogénesis, en un siguiente paso hemos restringido la expresión
de transgenes derivados de p23 a células asociadas al floema de lima Mexicana mediante el uso del
promotor especifico de floema del virus del moteado amarillo de la comelina (Commelina yellow mottle
virus, CoYMV). Se transformó lima Mexicana con construcciones que portaban el gen p23 completo, ya
sea de la cepa agresiva de CTV T36 o de la suave T317, o con un fragmento que comprende el dedo de
zinc y los motivos básicos flanqueantes de la primera, todas ellas bajo el control bien del promotor de
CoYMV o bien del promotor constitutivo 35S. La expresión de estas construcciones en el floema dio
lugar a aberraciones semejantes a los síntomas específicos de CTV, pero no a los síntomas inespecíficos
observados cuando se expresaba p23 de forma constitutiva. Por otra parte, la apariencia e intensidad de
las aberraciones fenotípicas más notorias similares a síntomas inducidos por CTV generadas por la
expresión específica en floema del gen p23 se relacionó positivamente con la agresividad de la cepa
origen utilizada. Además, la expresión en tejidos floemáticos del fragmento de p23 que comprende el
dominio de dedo de zinc y los motivos básicos flanqueantes fue suficiente para inducir síntomas
semejantes a los producidos por la infección con CTV, confirmando así que la región N-terminal
delimitada por los aminoácidos 1 y 157 podría determinar, al menos en parte, la patogénesis de CTV en
lima Mexicana. / Citrus tristeza virus (CTV) is the causal agent of one of the most devastating viral diseases of citrus trees in the world. CTV is phloem-restricted in natural citrus hosts, and has evolved three silencing suppressor proteins acting at intra- (p23 and p20) and inter-cellular level (p20 and p25) to overcome strong host antiviral defense in citrus. RNA interference (RNAi), an approach based on using dsRNA to trigger RNA silencing, has been widely used for generating transgenic plants resistant against viruses. Considering the important role of p23, p20 and p25 in CTV pathogenesis, we have transformed Mexican lime plants with an intron-hairpin vector carrying full untranslatable versions of genes p25, p20, p23 and the 3¿-UTR from the CTV strain T36, to attempt silencing their expression in CTV-infected cells. Complete resistance to viral infection was observed in three transgenic lines, with all their propagations remaining symptomless and virus-free after graft-inoculation with CTV-T36, either in the non-transgenic rootstock or directly in the transgenic scion. Accumulation of transgene-derived siRNAs was necessary but not sufficient for CTV resistance. Challenging immune transformants with a divergent CTV strain resulted in partial breakage of the resistance, stressing the importance of sequence identity in the underlying RNAi mechanism. This is the first evidence that it is possible to achieve full resistance to CTV in a highly sensitive citrus host by targeting simultaneously its three viral silencing suppressors through RNAi. The p23 protein encoded by the virus is additionally an important pathogenicity factor. Ectopic expression of p23 in
transgenic citrus plants induces developmental aberrations resembling CTV symptoms. To explore in more detail the role of p23 in CTV pathogenesis, the p23 gene from CTV T36 and three truncated versions thereof under the control of the Cauliflower mosaic virus 35S promoter were used to transform Mexican lime. Only the truncated version expressing amino acids 1 to 157 (p23¿158-209) elicited CTV-like symptoms, similar to, albeit milder than, those incited by expressing the whole p23 protein (209 amino acids), thus delimiting the region responsible for p23 pathogenesis in citrus to a 157 amino acid fragment including the Zn finger and flanking basic motifs of the protein. RNA silencing suppressor activity of p23 in N. benthamiana was abolished by all mutants tested, indicating that silencing suppression involves most p23 regions. To better define the role of p23 in CTV pathogenesis, we next restricted the expression of p23-derived transgenes to phloem-associated cells in Mexican lime plants by means of using the phloem-specific promoter from Commelina yellow mottle virus (CoYMV). Constructions carrying the complete gene p23 from either the severe T36 or the mild T317 CTV strains, or a fragment comprising the zinc-finger and flanking basic motifs from the former, either under the control of the CoYMV promoter or the constitutive 35S promoter were used for genetic transformation of Mexican lime. Expression of these constructs in the phloem incited aberrations resembling CTV-specific symptoms, but not the unspecific symptoms observed when p23 was constitutively expressed. Moreover, appearance and intensity of the most notorious CTV-like phenotypic aberrations induced by the phloem-specific expression of
the p23 gene were positively related with the aggressiveness of the source CTV strain used. Additionally, expression in phloem-tissues of the p23 fragment comprising the zinc-finger domain and flanking basic motifs was sufficient to induce CTV-like symptoms, corroborating that the N-terminal region (delimited by amino acids 1 and 157) determines, at least in part, CTV pathogenesis in Mexican lime. / Soler Calvo, N. (2013). Transgenic resistance against Citrus tristeza virus (CTV) and analysis of the viral p23 protein as pathogenicity determinant in citrus [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31631
|
180 |
Inhibition of respiratory syncytial virus by nasally administered siRNA modified with F-ANAWang, Julie Juan January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
Page generated in 0.0921 seconds