31 |
Maneuvering of Distributed Space-Borne Sensors for Optimal Interferometric Imaging PerformanceSandberg, Julie 2010 August 1900 (has links)
The need for high resolution, continuously sustained imaging drives the interest
in space-borne, distributed aperture, interferometric (amplitude, heterodyne, or
intensity correlation) systems. This paper will discuss the maneuver controls for a
system of multiple space-based telescopes to secure optimal image quality. Such distributed
aperture systems eff ectively measure the Fourier Transform of the collected
light so that the observed wave pattern is seen in the frequency plane. This Fourier
Transform representation of physical spacecraft maneuvers may be interpreted as
coverage regions (discs) in the frequency plane. Superior coverage of the frequency
plane, which is directly related to image quality, is investigated for imaging distant
objects using interferometric techniques where apertures are distributed on multiple
space-based telescopes. The corresponding cost function is based on the optimality of
the spacecraft maneuvers, which in turn is based on achieving a high image quality.
This study builds on previous research wherein the first-order necessary conditions
(FONC) were derived. The FONC are derived for specialized rectilinear motion
and expanded to incorporate varying coverage disc velocities. These linearized equations
are verifi ed to be consistent with those for the constant velocity case. Next,
linearized first-order necessary conditions are shown to correspond closely with the
fully nonlinear case. After that, the conditions for optimal overlap of the coverage
paths will be given; these conditions lead to the optimal cost based on frequency plane
parameters. Finally, a heuristic approach will be used to compare diff erent frequency plane coverage strategies. An analogy to painting will be presented to demonstrate
adequate signal-to-noise ratio required for a desired image quality.
|
32 |
Study of applications of second harmonic generationPrem, Adrienne Marie 08 July 2011 (has links)
Two applications of second harmonic generation (SHG), a nonlinear optical technique, are studied. First, Fresnel factors are used with a bond model to describe SHG from vicinal silicon at five incidence angles: 7.5°, 22°, 30°, 45°, and 52°. Second, a prototype apparatus for applying SHG to enhance imaging capabilities of optical coherence tomography, a microscopy technique used in many biological fields, is briefly described. / text
|
33 |
ERROR ANALYSIS AND DATA REDUCTION FOR INTERFEROMETRIC SURFACE MEASUREMENTSZhou, Ping January 2009 (has links)
High-precision optical systems are generally tested using interferometry, since it often is the only way to achieve the desired measurement precision and accuracy. Interferometers can generally measure a surface to an accuracy of one hundredth of a wave. In order to achieve an accuracy to the next order of magnitude, one thousandth of a wave, each error source in the measurement must be characterized and calibrated.Errors in interferometric measurements are classified into random errors and systematic errors. An approach to estimate random errors in the measurement is provided, based on the variation in the data. Systematic errors, such as retrace error, imaging distortion, and error due to diffraction effects, are also studied in this dissertation. Methods to estimate the first order geometric error and errors due to diffraction effects are presented.Interferometer phase modulation transfer function (MTF) is another intrinsic error. The phase MTF of an infrared interferometer is measured with a phase Siemens star, and a Wiener filter is designed to recover the middle spatial frequency information.Map registration is required when there are two maps tested in different systems and one of these two maps needs to be subtracted from the other. Incorrect mapping causes wavefront errors. A smoothing filter method is presented which can reduce the sensitivity to registration error and improve the overall measurement accuracy.Interferometric optical testing with computer-generated holograms (CGH) is widely used for measuring aspheric surfaces. The accuracy of the drawn pattern on a hologram decides the accuracy of the measurement. Uncertainties in the CGH manufacturing process introduce errors in holograms and then the generated wavefront. An optimal design of the CGH is provided which can reduce the sensitivity to fabrication errors and give good diffraction efficiency for both chrome-on-glass and phase etched CGHs.
|
34 |
Stellar Variability: A Broad and Narrow PerspectiveParks, James 12 August 2014 (has links)
A broad near-infrared photometric survey is conducted of 1678 stars in the direction of the $\rho$ Ophiuchi ($\rho$ Oph) star forming region using data from the 2MASS Calibration Database. The survey involves up to 1584 photometric measurements in the \emph{J}, \emph{H} and \emph{K$_{s}$} bands with an $\sim$1 day cadence spanning 2.5 years. Identified are 101 variable stars with $\Delta$\emph{K$_{s}$} band amplitudes from 0.044 to 2.31 mag and $\Delta$(\emph{J}-\emph{K$_{s}$}) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 $\rho$ Oph star cluster members, 79$\%$ are variable; in addition, 22 variable stars are identified as candidate members. The variability is categorized as periodic, long timescale, or irregular based on the \emph{K$_{s}$} time series morphology. The dominant variability mechanisms are assigned based on the correlation between the stellar color and single band variability. Periodic signals are found in 32 variable stars with periods between 0.49 to 92 days. The most common variability mechanism among these stars is rotational modulation of cool starspots. Periodic eclipse-like variability is identified in 6 stars with periods ranging from 3 to 8 days; in these cases the variability mechanism may be warped circumstellar material driven by a hot proto-Jupiter. Aperiodic, long time scale variability is identified in 31 stars with time series ranging from 64 to 790 days. The variability mechanism is split evenly between either variable extinction or mass accretion. The remaining 40 stars exhibit sporadic, aperiodic variability with no discernible time scale or variability mechanism.
Interferometric images of the active giant $\lambda$ Andromedae ($\lambda$ And) were obtained for 27 epochs spanning November. 2007 to September, 2011. The \emph{H} band angular diameter and limb darkening coefficient of $\lambda$ And are 2.777 $\pm$ 0.027 mas and 0.241 $\pm$ 0.014, respectively. Starspot properties are extracted via a parametric model and an image reconstruction program. High fidelity images are obtained from the 2009, 2010, and 2011 data sets. Stellar rotation, consistent with the photometrically determined period, is traced via starspot motion in 2010 and 2011. The orientation of $\lambda$ And is fully characterized with a sky position angle and inclination angle of 23$\degree$ and 78$\degree$, respectively.
|
35 |
Development of novel diagnostic techniques to measure heat release rate perturbations in flamesLi, Jingxuan 30 January 2012 (has links) (PDF)
Heat release rate disturbances are the sources of additional thermal stresses, direct and indirect combustion noise and undesirable vibrations. In extreme cases, these perturbations may even cause destructive combustion instabilities. These quantities are difficult to measure in practical burners. The objective of this work is to develop two alternative diagnostics to measure heat release rate fluctuations in unsteady flames. These techniques are validated in generic configurations for perfectly premixed laminar flames. The first method is an acoustic technique, which is based on the measurement of the travel time of ultrasonic waves through the flames. Fluctuations of the sound propagation time transmission through unsteady flames are used to estimate perturbations in the burned gases width along the acoustic path. This information is then used to reconstruct heat release rate fluctuations. This technique is validated in the cases of unstable laminar premixed flames driven by buoyancy forces and for flames submitted to harmonic flow velocity modulations. Analytical expressions are derived linking fluctuations in heat release rate and disturbances of the sound travel time. Measurements made with this acoustic technique are compared with optical detections based on the flame chemiluminescence and with predictions from an analytical model. Good agreements are obtained between these different methods validating the proposed technique. The second method envisaged is an optical technique based on a Laser Interferometric Vibrometer used to measure integrated density perturbations along the optical path of a laser beam. It is shown that density disturbances along this path result mainly from heat release rate fluctuations when the flames are confined. A link is established to reconstruct heat release rate disturbances from the signal of the interferometer. The technique is validated in the case of pulsated laminar premixed flames. Measurements are compared to line-of-sight integrated chemiluminescence emission measurements. A good agreement is obtained for harmonic flow modulations at different forcing frequencies and perturbation levels for flames operating at different flow conditions. This work validates the principle of this alternative technique for detecting heat release rate perturbations.
|
36 |
Development of a system for tracking objects in a confined space / S.J. de WetDe Wet, Sarel Joubert January 2009 (has links)
Thesis (M.Ing. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2010.
|
37 |
Considerations for the implementation of the radio interferometric positioning system on a single wireless node / van der Merwe D.J.Van der Merwe, David Johannes January 2011 (has links)
The ability to localise objects and persons is a useful ability, that is currently used in everyday
life in the form of Global Positioning System (GPS) navigation. Localisation is
also useful in data networks. The ability to localise nodes in a network paves the way
for applications such as location based services, beamforming and geographic routing.
The Radio Interferometric Positioning System (RIPS), is a method originally designed
for localisation in wireless sensor networks. RIPS is a promising method due to the fact
that it is capable of localisation with high accuracy over long ranges. This is something
which other existing methods are not capable of.
RIPS makes localisation measurements in a different manner from conventional methods.
Instead of making pairwise measurements between a transmitter and receiver,
RIPS uses sets of four nodes in each of its measurements. Furthermore, RIPS requires
multiple measurements to obtain the correct RIPS measurement value. This value is
referred to as a q–range. Multiple q–ranges are required in order to localise a node.
This creates overhead in terms of co–operation between the nodes participating in a
RIPS measurement.
The focus of this research is to provide a possible solution to this problem of overhead.
In this dissertation an investigation is launched into the considerations and benefits
of implementing RIPS on a single node. This is done by creating a conceptual design
for a single wireless node capable of implementing RIPS through the use of multiple
antennas. In order to test this conceptual device, a simulation model is created.
This simulation model is then validated, verified and used in experiments designed
to test the effects of certain design considerations and variables on the conceptual device’s
localisation accuracy. The analysis of the results from these experiments shows
that the conceptual device’s use of multiple antennas makes RIPS sensitive to errors.
Increasing the distances separating the conceptual device’s antennas is found to decrease
this sensitivity to errors. This is shown to be caused by the distances separating
the antennas imposing limits on the range of q–ranges values that are possible, with
smaller distances resulting in smaller ranges of possible q–range values. It is also found
that the use of higher frequencies in RIPS measurements results in greater accuracy.
This is with the assumption that these frequencies can be accurately transmitted. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2012.
|
38 |
Development of a system for tracking objects in a confined space / S.J. de WetDe Wet, Sarel Joubert January 2009 (has links)
Thesis (M.Ing. (Electronical Engineering))--North-West University, Potchefstroom Campus, 2010.
|
39 |
Considerations for the implementation of the radio interferometric positioning system on a single wireless node / van der Merwe D.J.Van der Merwe, David Johannes January 2011 (has links)
The ability to localise objects and persons is a useful ability, that is currently used in everyday
life in the form of Global Positioning System (GPS) navigation. Localisation is
also useful in data networks. The ability to localise nodes in a network paves the way
for applications such as location based services, beamforming and geographic routing.
The Radio Interferometric Positioning System (RIPS), is a method originally designed
for localisation in wireless sensor networks. RIPS is a promising method due to the fact
that it is capable of localisation with high accuracy over long ranges. This is something
which other existing methods are not capable of.
RIPS makes localisation measurements in a different manner from conventional methods.
Instead of making pairwise measurements between a transmitter and receiver,
RIPS uses sets of four nodes in each of its measurements. Furthermore, RIPS requires
multiple measurements to obtain the correct RIPS measurement value. This value is
referred to as a q–range. Multiple q–ranges are required in order to localise a node.
This creates overhead in terms of co–operation between the nodes participating in a
RIPS measurement.
The focus of this research is to provide a possible solution to this problem of overhead.
In this dissertation an investigation is launched into the considerations and benefits
of implementing RIPS on a single node. This is done by creating a conceptual design
for a single wireless node capable of implementing RIPS through the use of multiple
antennas. In order to test this conceptual device, a simulation model is created.
This simulation model is then validated, verified and used in experiments designed
to test the effects of certain design considerations and variables on the conceptual device’s
localisation accuracy. The analysis of the results from these experiments shows
that the conceptual device’s use of multiple antennas makes RIPS sensitive to errors.
Increasing the distances separating the conceptual device’s antennas is found to decrease
this sensitivity to errors. This is shown to be caused by the distances separating
the antennas imposing limits on the range of q–ranges values that are possible, with
smaller distances resulting in smaller ranges of possible q–range values. It is also found
that the use of higher frequencies in RIPS measurements results in greater accuracy.
This is with the assumption that these frequencies can be accurately transmitted. / Thesis (M.Ing. (Computer and Electronical Engineering))--North-West University, Potchefstroom Campus, 2012.
|
40 |
Order & disorder: a study of the flaring properties and polarized emission of blazarsMacDonald, Nicholas Roy 09 June 2017 (has links)
Blazars are the most luminous persistent and enigmatic objects in the sky. They constitute a sub-class of active galactic nuclei (AGN) whose relativistic plasma jets are closely aligned to our line of sight. By monitoring the polarized emission of these jets and subsequently modeling flares in the high-energy emission, we are able to gain insight into the parsec-scale physics of the jets close to the central engines. My dissertation develops and augments several theoretical models of high-energy blazar emission.
The vast majority of gamma-ray flares detected in blazars are highly correlated with flares detected at longer wavelengths; however, a small subset of these gamma-ray flares appear to occur in isolation. These "orphan" gamma-ray flares challenge current models of blazar variability. I have developed a theoretical model of blazar emission to explain the origin of these orphan flares. This model invokes the presence of a sheath of plasma enshrouding the relativistic spine of the jet. The sheath supplies photons that are inverse-Compton scattered up to high energies by relativistic electrons contained within the jet, producing an orphan flare. This model is successfully applied to a number of such gamma-ray flares. In addition, I present stacked radio images that highlight the presence of jet sheaths in my sample of blazars.
Circular polarization (CP) has been detected in a number of blazar jets. CP is very sensitive to the underlying plasma content of the jet. A. Marscher has developed the Turbulent Extreme Multi-Zone (TEMZ) model for blazar emission consisting of thousands of individual cells of plasma that propagate relativistically across a standing shock in the jet. The turbulent nature of the magnetic field within the TEMZ grid naturally creates a birefringent environment in which CP emission can be produced. In order to investigate whether the TEMZ model can indeed produce CP, I have developed a numerical algorithm to solve the full Stokes equations of polarized radiative transfer. I apply this algorithm to ray tracing through the TEMZ model. I am able to demonstrate that TEMZ can reproduce CP at the levels present in blazars.
|
Page generated in 0.1035 seconds