41 |
Development of novel diagnostic techniques to measure heat release rate perturbations in flames / Développement de diagnostics alternatifs pour mesurer les fluctuations du taux de dégagement de chaleur dans les flammesLi, Jingxuan 30 January 2012 (has links)
Les fluctuations du taux de dégagement de chaleur sont souvent responsables d’intensification des flux thermiques aux parois, de vibrations et d’émissions sonores qui peuvent éventuellement dégénérer en instabilités thermo-acoustiques auto-entretenues. Ces phénomènes instationnaires dégradent les performances des foyers, provoquent un vieillissement prématuré de certains éléments de la chambre de combustion, voire des dégâts plus importants sur l’installation. Ces perturbations sont cependant difficiles à mesurer dans les foyers car il n’existe pas de diagnostic qui permette d'accéder directement au taux de dégagement de chaleur. L’objectif de ce travail est d'explorer deux alternatives aux solutions existantes pour accéder aux fluctuations du taux de dégagement de chaleur avec une bonne résolution temporelle. Ces nouvelles méthodes sont testées dans des configurations génériques parfaitement prémélangées pour des écoulements laminaires. La première méthode est une technique acoustique, qui repose sur la détermination du temps de vol d’ondes ultrasonores qui traversent l’écoulement. Les fluctuations du temps de vol de ces ondes sont utilisées pour détecter des perturbations de la largeur des gaz brûlés le long du chemin acoustique. Cette information permet de reconstituer les fluctuations du taux de dégagement de chaleur dans des flammes prémélangées. Les premières validations de cette méthode sont présentées pour des flammes en l'absence de perturbation externe lorsqu'elles présentent une instabilité de type Kelvin-Helmholtz pilotée par les phénomènes de flottabilité du panache des gaz brûlés. Des mesures sont ensuite conduites pour des flammes soumises à des modulations harmoniques de l'écoulement. Les données obtenues dans ces configurations sont comparées à des mesures optiques ainsi qu'à des prévisions analytiques. La seconde méthode est une technique optique utilisant un système d’interférométrie laser Doppler permettant de déterminer les fluctuations de densité intégrées le long du chemin optique. On montre dans un premier temps que les perturbations de densité sont principalement causées par des fluctuations du taux de dégagement de chaleur lorsque les flammes sont confinées. Un lien est établi pour reconstituer les perturbations du taux de dégagement de chaleur exploitant le signal de l'interféromètre. La technique est validée pour des flammes pulsées pour différentes richesses et débits. Les données obtenues sont comparées à des mesures reposant sur la chimiluminescence de la flamme. Un bon accord est obtenu pour des modulations harmoniques de l'écoulement à différentes fréquences et niveaux de perturbation. Ce travail permet de valider le principe de ces deux techniques pour détecter les perturbations du taux de dégagement de chaleur lorsque l'accès optique à la zone de combustion est réduit et lorsque des informations quantitatives résolues temporellement sont nécessaires. / Heat release rate disturbances are the sources of additional thermal stresses, direct and indirect combustion noise and undesirable vibrations. In extreme cases, these perturbations may even cause destructive combustion instabilities. These quantities are difficult to measure in practical burners. The objective of this work is to develop two alternative diagnostics to measure heat release rate fluctuations in unsteady flames. These techniques are validated in generic configurations for perfectly premixed laminar flames. The first method is an acoustic technique, which is based on the measurement of the travel time of ultrasonic waves through the flames. Fluctuations of the sound propagation time transmission through unsteady flames are used to estimate perturbations in the burned gases width along the acoustic path. This information is then used to reconstruct heat release rate fluctuations. This technique is validated in the cases of unstable laminar premixed flames driven by buoyancy forces and for flames submitted to harmonic flow velocity modulations. Analytical expressions are derived linking fluctuations in heat release rate and disturbances of the sound travel time. Measurements made with this acoustic technique are compared with optical detections based on the flame chemiluminescence and with predictions from an analytical model. Good agreements are obtained between these different methods validating the proposed technique. The second method envisaged is an optical technique based on a Laser Interferometric Vibrometer used to measure integrated density perturbations along the optical path of a laser beam. It is shown that density disturbances along this path result mainly from heat release rate fluctuations when the flames are confined. A link is established to reconstruct heat release rate disturbances from the signal of the interferometer. The technique is validated in the case of pulsated laminar premixed flames. Measurements are compared to line-of-sight integrated chemiluminescence emission measurements. A good agreement is obtained for harmonic flow modulations at different forcing frequencies and perturbation levels for flames operating at different flow conditions. This work validates the principle of this alternative technique for detecting heat release rate perturbations.
|
42 |
The LBTI Fizeau imager – I. Fundamental gain in high-contrast imagingPatru, F., Esposito, S., Puglisi, A., Riccardi, A., Pinna, E., Arcidiacono, C., Antichi, J., Mennesson, B., Defrère, D., Hinz, P. M., Hill, J. M. 12 1900 (has links)
We show by numerical simulations a fundamental gain in contrast when combining coherently monochromatic light from two adaptive optics (AO) telescopes instead of using a single stand-alone AO telescope, assuming efficient control and acquisition systems at high speed. A contrast gain map is defined as the normalized point spread functions (PSFs) ratio of a single Large Binocular Telescope (LBT) aperture over the dual Large Binocular Telescope Interferometer (LBTI) aperture in Fizeau mode. The global gain averaged across the AO-corrected field of view is improved by a factor of 2 in contrast in long exposures and by a factor of 10 in contrast in short exposures (i.e. in exposures, respectively, longer or shorter than the coherence time). The fringed speckle halo in short exposures contains not only high-angular resolution information, as stated by speckle imaging and speckle interferometry, but also high-contrast imaging information. A high-gain zone is further produced in the valleys of the PSF formed by the dark Airy rings and/or the dark fringes. Earth rotation allows us to exploit various areas in the contrast gain map. A huge-contrast gain in narrow zones can be achieved when both a dark fringe and a dark ring overlap on to an exoplanet. Compared to a single 8-m LBT aperture, the 23-m LBTI Fizeau imager can provide a gain in sensitivity (by a factor of 4), a gain in angular resolution (by a factor of 3) and, as well, a gain in raw contrast (by a factor of 2-1000 varying over the AO-corrected field of view).
|
43 |
The LBTI Fizeau imager – II. Sensitivity of the PSF and the MTF to adaptive optics errors and to piston errorsPatru, F., Esposito, S., Puglisi, A., Riccardi, A., Pinna, E., Arcidiacono, C., Antichi, J., Mennesson, B., Defrère, D., Hinz, P. M., Hill, J. M. 12 1900 (has links)
We show numerical simulations with monochromatic light in the visible for the LBTI Fizeau imager, including opto-dynamical aberrations due here to adaptive optics (AO) errors and to differential piston fluctuations, while other errors have been neglected. The achievable Strehl by the LBTI using two AO is close to the Strehl provided by a single standalone AO system, as long as other differential wavefront errors are mitigated. The LBTI Fizeau imager is primarily limited by the AO performance and by the differential piston/tip-tilt errors. Snapshots retain high-angular resolution and high-contrast imaging information by freezing the fringes against piston errors. Several merit functions have been critically evaluated in order to characterize point spread functions and the modulation transfer functions for high-contrast imaging applications. The LBTI Fizeau mode can provide an image quality suitable for standard science cases (i.e. a Strehl above 70 per cent) by performing both at a time: an AO correction better than approximate to lambda/18RMS for both short and long exposures, and a piston correction better than approximate to lambda/8 RMS for long exposures or simply below the coherence length for short exposures. Such results, which can be applied to any observing wavelength, suggest that AO and piston control at the LBTI would already improve the contrast at near-and mid-infrared wavelengths. Therefore, the LBTI Fizeau imager can be used for high-contrast imaging, providing a high-Strehl regime (by both AO systems), a cophasing mode (by a fringe tracker) and a burst mode (by a fast camera) to record fringed speckles in short exposures.
|
44 |
An ALMA Dynamical Mass Estimate of the Proposed Planetary-mass Companion FW Tau CWu, Ya-Lin, Sheehan, Patrick D. 08 September 2017 (has links)
Dynamical mass estimates down to the planet-mass regime can help to understand planet formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm observations of FW Tau C, a proposed similar to 10M(Jup) planet-mass companion at similar to 330 au from the host binary FW Tau AB. We spatially and spectrally resolve the accretion disk of FWTau C in (CO)-C-12 (2-1). By modeling the Keplerian rotation of gas, we derive a dynamical mass of similar to 0.1 M-circle dot. Therefore, FW Tau C is unlikely a planet, but rather a low-mass star with a highly inclined disk. This also suggests that FW Tau is a triple system consisting of three similar to 0.1. M-circle dot stars.
|
45 |
Data Reduction and Image Reconstruction Techniques for Non-redundant MaskingSallum, S., Eisner, J. 16 November 2017 (has links)
The technique of non-redundant masking (NRM) transforms a conventional telescope into an interferometric array. In practice, this provides a much better constrained point-spread function than a filled aperture and thus higher resolution than traditional imaging methods. Here, we describe an NRM data reduction pipeline. We discuss strategies for NRM observations regarding dithering patterns and calibrator selection. We describe relevant image calibrations and use example Large Binocular Telescope data sets to show their effects on the scatter in the Fourier measurements. We also describe the various ways to calculate Fourier quantities, and discuss different calibration strategies. We present the results of image reconstructions from simulated observations where we adjust prior images, weighting schemes, and error bar estimation. We compare two imaging algorithms and discuss implications for reconstructing images from real observations. Finally, we explore how the current state of the art compares to next-generation Extremely Large Telescopes.
|
46 |
Development of High Resolution Interferometric Inertial SensorsDing, Binlei 13 January 2021 (has links) (PDF)
The gravitational wave observatory and many other large ground-based instruments need to be decoupled from the Earth’s ever-present motion to improve their performance. In such scenarios, inertial sensors which measure the ground motion are necessary, especially those with a high resolution and a large dynamic range. This thesis aims to develop high performance inertial sensors which outperform the commercially available ones in terms of resolution and dynamic range in low frequency down to 0.01 Hz.Inertial sensors essentially consist of two parts: a single-degree-of-freedom mechanism and a transducer which converts mechanical quantities into electrical quantities. In this work, a novel interferometric readout based on homodyne quadrature interferometer is proposed and examined. Experimental results show that its resolution is 1e-11, 1e-12 and 2e-13 m/rtHz at 0.01, 0.1 and 1 Hz respectively. For the mechanical parts, the leaf spring pendulum and Lehman pendulum are used respectively as the restoring springs for the vertical and horizontal inertial sensors. With these, the resonance frequencies are made to 0.26 and 0.11 Hz, respectively. Combined with the interferometric readout, a Vertical Interferometric Inertial Sensor (VINS) and a Horizontal Interferometric Inertial Sensor (HINS) are developed. They are placed together in a vacuum chamber as an inertial unit to measure vertical and horizontal motion.A critical investigation of the developed HINS and VINS is performed. The passive VINS and HINS are compared, firstly, with a commercial seismometer (Guralp 6T) the results showed that they provide equivalent seismograms in frequencies from tides to 10 Hz. Secondly, both simulations and measurements have been conducted in this study, a noise budget of the interferometric readout itself was constructed, which corresponds to the case when the proof-mass of the inertial sensors is blocked. At present, the resolution of the interferometric readout is found to be limited by the photodetector noise from 0.01 to 1 Hz. Moreover, huddle tests were conducted for the inertial units to examine their overall performance. However, extra experiments and simulations are performed and it is found that the resolution identified from the experimental means is worse than that from the simulation. Nevertheless, the mismatch can be reduced by reducing the magnitude of input ground vibration, by reducing undesired inputs and improving the stability of the interferometric readout output signal. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
47 |
VLBI Imaging of ICRF Sources in the Southern Hemisphere using Geodetic and Astrometric ObservationsBasu, Sayan 05 1900 (has links)
The present International Celestial Reference Frame (ICRF), the ICRF-3 is based
on a catalogue of 4536 quasar positions obtained from Very Long Baseline Interferometry
(VLBI) radio measurements. This radio frame is crucial for many applications, from
measurements of Earth’s orientation in space to spacecraft navigation and measurements
of sea-level rise. However, the deficit in ICRF source density in the South and lack of
dedicated imaging campaigns in the South, to monitor structural changes, remain a big
concern. These ICRF sources can exhibit spatially extended emission structures that can
have a significant effect on astrometric VLBI measurements. The Celestial Reference
Frame Deep South (CRDS) is a dedicated astrometric VLBI programme to observe
Southern ICRF sources on a regular basis. In an effort to improve the situation in the
South, these CRDS sessions have recently been optimized for VLBI imaging. In this
thesis, I present VLBI images and source structure analysis results for southern ICRF
sources observed in four of these CRDS sessions. For some of these sources, I present
the very first high-resolution radio images. I also present results from source structure
analysis and a corresponding assessment of astrometric quality, and I also present results
from efforts to increase the ICRF source density in the South. / Mathematical Sciences / Ph. D. (Astronomy)
|
48 |
Messung von Impulsflüssen in der Mesosphäre / unteren Thermosphäre mit dem SKiYMET Meteorradar in Collm – Methode und erste ErgebnissePlacke, M., Jacobi, Ch, Stober, G. 17 August 2017 (has links)
Schwerewellen transportieren Energie und Impuls aus den unteren in die oberen Atmosphärenschichten. Impulsflüsse und ihre Divergenz beschreiben dabei die Kopplung der Wellen mit der mittleren Zirkulation. Mit einer Methode von Hocking (2005) können Varianzen und Schwerewellenimpulsflüsse in der Mesosphäre / unteren Thermosphäre mit einem All-Sky Interferometric (SKiYMET) Meteorradar bestimmt werden. Diese Methode wurde auf die Datensätze des Meteorradars in Collm (51.3°N,13.0°E) angewandt. Erste Ergebnisse für die Varianzen und Impulsflüsse sowie speziell für die Höhenprofile des vertikalen Flusses zonalen Impulses im Jahresgang und die Untersuchung dessen auf periodische Schwankungen werden hier vorgestellt. / Gravity waves transport energy and momentum from the lower to the upper atmosphere. Momentum fluxes and their divergence describe the coupling of the waves with the background circulation. By using a method presented by Hocking (2005), wind variances and gravity wave momentum fluxes in the mesosphere/lower thermosphere can be determined with an all-sky interferometric (SKiYMET) meteor radar. This method has been applied to the data sets of the meteor radar at Collm (51.3°N,13.0°E). First results for the variances and momentum fluxes as well as for the height profiles of the vertical flux of zonal momentum, its seasonal cycle and periodic variations are presented.
|
49 |
Spherically-Symmetric Model Stellar Atmospheres and Limb Darkening: I. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for Red Giant StarsNeilson, H. R., Lester, J. B. 19 June 2013 (has links)
Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRot and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities log g < 3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
|
50 |
Spherically-Symmetric Model Stellar Atmospheres and Limb Darkening: I. Limb-Darkening Laws, Gravity-Darkening Coefficients and Angular Diameter Corrections for Red Giant StarsNeilson, H. R., Lester, J. B. 19 June 2013 (has links)
Model stellar atmospheres are fundamental tools for understanding stellar observations from interferometry, microlensing, eclipsing binaries and planetary transits. However, the calculations also include assumptions, such as the geometry of the model. We use intensity profiles computed for both plane-parallel and spherically symmetric model atmospheres to determine fitting coefficients in the BVRIHK, CoRot and Kepler wavebands for limb darkening using several different fitting laws, for gravity-darkening and for interferometric angular diameter corrections. Comparing predicted variables for each geometry, we find that the spherically symmetric model geometry leads to different predictions for surface gravities log g < 3. In particular, the most commonly used limb-darkening laws produce poor fits to the intensity profiles of spherically symmetric model atmospheres, which indicates the need for more sophisticated laws. Angular diameter corrections for spherically symmetric models range from 0.67 to 1, compared to the much smaller range from 0.95 to 1 for plane-parallel models.
|
Page generated in 0.1122 seconds