1 |
Warm-start strategies in primal-dual interior point method for linear programming.January 2001 (has links)
Lee Sung Tak. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 100-101). / Abstracts in English and Chinese. / Chapter 1 --- Introduction and Synopsis --- p.1 / Chapter 2 --- Literature Review --- p.5 / Chapter 3 --- The primal-dual interior point algorithm and the self-dual embedding method: Revisit --- p.7 / Chapter 4 --- The Warm-Start Strategy (WSS) --- p.25 / Chapter 5 --- Experimental result and analysis I: Parametric programming case --- p.31 / Chapter 5.1 --- The Big-Mac Problem --- p.33 / Chapter 5.2 --- The randomly generated problem and the Netlib problem --- p.46 / Chapter 5.3 --- Chapter summary --- p.53 / Chapter 6 --- Experimental result and analysis II: Adding rows and columns --- p.54 / Chapter 6.1 --- The Big-Mac problem --- p.57 / Chapter 6.2 --- The randomly generated problem and the Netlib problem --- p.66 / Chapter 6.3 --- The ball constraint problem --- p.82 / Chapter 6.4 --- Chapter Summary --- p.94 / Chapter 7 --- Summary and conclusion --- p.96 / Bibliography --- p.100 / Chapter A --- Appendix --- p.102
|
2 |
An Algorithm for Computing the Symmetry Point of a PolytopeBelloni, Alexandre, Freund, Robert M. 01 1900 (has links)
Given a closed convex set C and a point x in C, let sym(x,C) denote the symmetry value of x in C, which essentially measures how symmetric C is about the point x. Denote by sym(C) the largest value of sym(x,C) among all x in C, and let x* denote the most symmetric point in C. These symmetry measures are all invariant under linear transformation, change in inner product, etc., and so are of interest in the study of the geometry of convex sets and arise naturally in the evaluation of the complexity of interior-point methods in particular. Herein we show that when C is given by the intersection of halfspaces, i.e., C={x | Ax <= b}, then x* as well as the symmetry value of C can be computed by using linear programming. Furthermore, given an approximate analytic center of C, there is a strongly polynomial-time algorithm for approximating sym(C) to any given relative tolerance. / Singapore-MIT Alliance (SMA)
|
3 |
First-order affine scaling continuous method for convex quadratic programmingYue, Hongwei 24 January 2014 (has links)
We develop several continuous method models for convex quadratic programming (CQP) problems with di.erent types of constraints. The essence of the continuous method is to construct one ordinary di.erential equation (ODE) system such that its limiting equilibrium point corresponds to an optimal solution of the underlying optimization problem. All our continuous method models share the main feature of the interior point methods, i.e., starting from any interior point, all the solution trajectories remain in the interior of the feasible regions. First, we present an a.ne scaling continuous method model for nonnegativity constrained CQP. Under the boundedness assumption of the optimal set, a thorough study on the properties of the ordinary di.erential equation is provided, strong convergence of the continuous trajectory of the ODE system is proved. Following the features of this ODE system, a new ODE system for solving box constrained CQP is also presented. Without projection, the whole trajectory will stay inside the box region, and it will converge to an optimal solution. Preliminary simulation results illustrate that our continuous method models are very encouraging in obtaining the optimal solutions of the underlying optimization problems. For CQP in the standard form, the convergence of the iterative .rst-order a.ne scaling algorithm is still open. Under boundedness assumption of the optimal set and nondegeneracy assumption of the constrained region, we discuss the properties of the ODE system induced by the .rst-order a.ne scaling direction. The strong convergence of the continuous trajectory of the ODE system is also proved. Finally, a simple iterative scheme induced from our ODE is presented for finding an optimal solution of nonnegativity constrained CQP. The numerical results illustrate the good performance of our continuous method model with this iterative scheme. Keywords: ODE; Continuous method; Quadratic programming; Interior point method; A.ne scaling.
|
4 |
Advances in interior point methods and column generationGonzález Brevis, Pablo January 2013 (has links)
In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from unstable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these techniques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solutions are used in the course of the algorithm. Additionally, we present a comprehensive computational study of the solution of linear relaxed formulations obtained after applying the Dantzig-Wolfe decomposition principle to the cutting stock problem (CSP), the vehicle routing problem with time windows (VRPTW), and the capacitated lot sizing problem with setup times (CLSPST). We compare the performance of the PDCGM with the standard column generation method (SCGM) and the analytic centre cutting planning method (ACCPM). Overall, the PDCGM achieves the best performance when compared to the SCGM and the ACCPM when solving challenging instances from a column generation perspective. One important characteristic of this column generation strategy is that no speci c tuning is necessary and the algorithm poses the same level of difficulty as standard column generation method. The natural stabilization available in the PDCGM due to the use of sub-optimal well-centred interior point solutions is a very attractive feature of this method. Moreover, the larger the instance, the better is the relative performance of the PDCGM in terms of column generation iterations and CPU time. The second part of this thesis is concerned with the development of a new warmstarting strategy for the PDCGM. It is well known that taking advantage of the previously solved RMP could lead to important savings in solving the modified RMP. However, this is still an open question for applications arising in an integer optimization context and the PDCGM. Despite the current warmstarting strategy in the PDCGM working well in practice, it does not guarantee full feasibility restorations nor considers the quality of the warmstarted iterate after new columns are added. The main motivation of the design of the new warmstarting strategy presented in this thesis is to close this theoretical gap. Under suitable assumptions, the warmstarting procedure proposed in this thesis restores primal and dual feasibilities after the addition of new columns in one step. The direction is determined so that the modi cation of small components at a particular solution is not large. Additionally, the strategy enables control over the new duality gap by considering an expanded symmetric neighbourhood of the central path. As observed from our computational experiments solving CSP and VRPTW, one can conclude that the warmstarting strategies for the PDCGM are useful when dense columns are added to the RMP (CSP), since they consistently reduce the CPU time and also the number of iterations required to solve the RMPs on average. On the other hand, when sparse columns are added (VRPTW), the coldstart used by the interior point solver HOPDM becomes very efficient so warmstarting does not make the task of solving the RMPs any easier.
|
5 |
New adaptive interior point algorithms for linear optimizationSalahi, Maziar. Terlaky, Tamás. January 1900 (has links)
Thesis (Ph.D.)--McMaster University, 2006. / Supervisor: Tamás Terlaky. Includes bibliographical references (p. 181-190).
|
6 |
Interior Point Cutting Plane Methods in Integer ProgrammingNaoum-Sawaya, Joe January 2011 (has links)
This thesis presents novel approaches that use interior point concepts in solving mixed integer programs. Particularly, we use the analytic center cutting plane method to improve three of the main components of the branch-and-bound algorithm: cutting planes, heuristics, and branching.
First, we present an interior point branch-and-cut algorithm for structured integer programs based on Benders decomposition. We explore using Benders decomposition in a branch-and-cut framework where the Benders cuts are generated using the analytic center cutting plane method. The algorithm is tested on two classes of problems: the capacitated facility
location problem and the multicommodity capacitated fixed charge network design
problem. For
the capacitated facility location problem, the proposed approach was on average
2.5 times faster than Benders-branch-and-cut and 11 times faster than classical
Benders decomposition. For the multicommodity capacitated fixed charge network
design problem, the proposed approach was 4 times faster than Benders-branch-and-cut while classical Benders decomposition failed to solve the
majority of the tested instances.
Second, we present a heuristic algorithm for mixed integer programs based on interior points. As integer solutions
are typically in the interior, we use the analytic center cutting plane method to search for integer feasible points within the interior
of the feasible set. The
algorithm searches along two line segments that connect
the weighted analytic center and two extreme points of the linear
programming relaxation. Candidate points are rounded and
tested for feasibility. Cuts aimed to improve the objective function
and restore feasibility are then added to displace the weighted
analytic center until a feasible integer solution is found. The algorithm is composed of three phases. In the first, points along
the two line segments are rounded gradually to find integer feasible
solutions. Then in an attempt to improve the quality of the solutions, the cut related to the bound constraint is updated
and a new weighted analytic center is found. Upon failing to find a
feasible integer solution, a second phase is started where cuts
related to the violated feasibility constraints are added. As a last resort, the
algorithm solves a minimum distance problem in a third phase. For all the tested instances, the algorithm finds good quality feasible solutions in the first two phases and the third phase is never called.
Finally, we present a new approach to generate good general branching constraints based on the shape of the polyhedron. Our approach is based on approximating the polyhedron using an inscribed ellipsoid. We use Dikin's ellipsoid which we calculate using the analytic center. We propose to use the disjunction that has a minimum width on the ellipsoid. We use the fact that the width of the ellipsoid in a given direction has a closed form solution in order to formulate a quadratic problem whose optimal solution is a thin direction of the ellipsoid. While solving a quadratic problem at each node of the branch-and-bound tree is impractical, we use a local search heuristic for its solution. Computational testing conducted on hard integer problems from MIPLIB and CORAL showed that the proposed approach outperforms classical branching.
|
7 |
Interior Point Cutting Plane Methods in Integer ProgrammingNaoum-Sawaya, Joe January 2011 (has links)
This thesis presents novel approaches that use interior point concepts in solving mixed integer programs. Particularly, we use the analytic center cutting plane method to improve three of the main components of the branch-and-bound algorithm: cutting planes, heuristics, and branching.
First, we present an interior point branch-and-cut algorithm for structured integer programs based on Benders decomposition. We explore using Benders decomposition in a branch-and-cut framework where the Benders cuts are generated using the analytic center cutting plane method. The algorithm is tested on two classes of problems: the capacitated facility
location problem and the multicommodity capacitated fixed charge network design
problem. For
the capacitated facility location problem, the proposed approach was on average
2.5 times faster than Benders-branch-and-cut and 11 times faster than classical
Benders decomposition. For the multicommodity capacitated fixed charge network
design problem, the proposed approach was 4 times faster than Benders-branch-and-cut while classical Benders decomposition failed to solve the
majority of the tested instances.
Second, we present a heuristic algorithm for mixed integer programs based on interior points. As integer solutions
are typically in the interior, we use the analytic center cutting plane method to search for integer feasible points within the interior
of the feasible set. The
algorithm searches along two line segments that connect
the weighted analytic center and two extreme points of the linear
programming relaxation. Candidate points are rounded and
tested for feasibility. Cuts aimed to improve the objective function
and restore feasibility are then added to displace the weighted
analytic center until a feasible integer solution is found. The algorithm is composed of three phases. In the first, points along
the two line segments are rounded gradually to find integer feasible
solutions. Then in an attempt to improve the quality of the solutions, the cut related to the bound constraint is updated
and a new weighted analytic center is found. Upon failing to find a
feasible integer solution, a second phase is started where cuts
related to the violated feasibility constraints are added. As a last resort, the
algorithm solves a minimum distance problem in a third phase. For all the tested instances, the algorithm finds good quality feasible solutions in the first two phases and the third phase is never called.
Finally, we present a new approach to generate good general branching constraints based on the shape of the polyhedron. Our approach is based on approximating the polyhedron using an inscribed ellipsoid. We use Dikin's ellipsoid which we calculate using the analytic center. We propose to use the disjunction that has a minimum width on the ellipsoid. We use the fact that the width of the ellipsoid in a given direction has a closed form solution in order to formulate a quadratic problem whose optimal solution is a thin direction of the ellipsoid. While solving a quadratic problem at each node of the branch-and-bound tree is impractical, we use a local search heuristic for its solution. Computational testing conducted on hard integer problems from MIPLIB and CORAL showed that the proposed approach outperforms classical branching.
|
8 |
Interior point methods for multicommodity network flowsTorres Guardia, Luis Ernesto, Alvez Lima, Gilson 25 September 2017 (has links)
This article studies the linear multicommodity network flow problem. This kind of problem arises in a wide variety of contexts. A numerical implementation of the primal-dual interior-point method is designed to solve the problem. In the interior-point method, at each iteration, the corresponding linear system, expressed as a normal equations system, is solved by using the AINV algorithm combined with a preconditioned conjugate gradient algorithm or by the AINV algorithm for the whole normal equations. Numerical experiments are conducted for networks of different dimensions and numbers of products for the distribution problem. The computational results show the effectiveness of the interior-point method for this class of network problems.
|
9 |
Solving convex programming with simple convex constraintsHou, Liangshao 09 July 2020 (has links)
The problems we studied in this thesis are linearly constrained convex programming (LCCP) and nonnegative matrix factorization (NMF). The resolutions of these two problems are all closely related to convex programming with simple convex constraints. The work can mainly be described in the following three parts. Firstly, an interior point algorithm following a parameterized central path for linearly constrained convex programming is proposed. The convergence and polynomial-time complexity are proved under the assumption that the Hessian of the objective function is locally Lipschitz continuous. Also, an initialization strategy is proposed, and some numerical results are provided to show the efficiency of the proposed algorithm. Secondly, the path following algorithm is promoted for general barrier functions. A class of barrier functions is proposed, and their corresponding paths are proved to be continuous and converge to optimal solutions. Applying the path following algorithm to these paths provide more flexibility to interior point methods. With some adjustments, the initialization method is equipped to validate implementation and convergence. Thirdly, we study the convergence of hierarchical alternating least squares algorithm (HALS) and its fast form (Fast HALS) for nonnegative matrix factorization. The coordinate descend idea for these algorithms is restated. With a precise estimation of objective reduction, some limiting properties are illustrated. The accumulation points are proved to be stationary points, and some adjustments are proposed to improve the implementation and efficiency
|
10 |
New Large Neighborhood Interior Point Methods For Semidefinite OptimizationLi, Yang January 2008 (has links)
<p>In this thesis, we extend the Ai-Zhang direction to the class of semidefinite
optimization problems. We define a new wide neighborhood N(τ1 ,τ2 ,η) and,
as usual, we utilize symmetric directions by scaling the Newton equation with
special matrices. After defining the "positive part" and the "negative part"
of a symmetric matrix, we solve the Newton equation with its right hand side
replaced first by its positive part and then by its negative part, respectively.
In this way, we obtain a decomposition of the usual Newton direction and use
different step lengths for each of them.</p><p>Starting with a feasible point (X^0 , y^0 , S^0) in N(τ1, τ2 , η ), the algorithm terminates
in at most 0(η√( κ∞n)log(1/ε) iterations, where κ∞ is a parameter
associated with the scaling matrix and ε is the required precision. To our best
knowledge, when the parameter η is a constant, this is the first large neighborhood
path-following Interior Point Method (IPM) with the same complexity
as small neighborhood path-following IPMs for semidefinite optimization that
use the Nesterov-Todd direction. In the case when η is chosen to be in the order
of √η, our complexity bound coincides with the known bound for classical
large neighborhood IPMs.</p><p>To make this thesis more accessible to readers who are new in this area, we
start with a brief introduction to IPMs and SDO. The basic concepts and
principles of IPMs and SDO are presented in Chapter 2 and 3.</p> / Thesis / Master of Applied Science (MASc)
|
Page generated in 0.1472 seconds