Spelling suggestions: "subject:"interleukin13 (genetics"" "subject:"interleukin1 (genetics""
1 |
Molecular Regulation of Interleukin-13 and Monocyte Chemoattractant Protein-1 Expression in Human Mast Cells by Interleukin-1betaLee, Steven A., Fitzgerald, S M., Huang, Shau K., Li, Chuanfu, Chi, David S., Milhorn, Denise M., Krishnaswamy, Guha 01 September 2004 (has links)
Mast cells play pivotal roles in immunoglobulin (Ig) E-mediated airway inflammation, expressing interleukin (IL)-13 and monocyte chemoattractant protein-1 (MCP-1), which in turn regulate IgE synthesis and/or inflammatory cell recruitment. The molecular effects of IL-1beta on cytokine expression by human mast cells (HMC) have not been studied well. In this report, we provide evidence that human umbilical cord blood-derived mast cells (CBDMC) and HMC-1 cells express the type 1 receptor for IL-1. We also demonstrate that IL-1beta and tumor necrosis factor-alpha are able to induce, individually or additively, dose-dependent expression of IL-13 and MCP-1 in these cells. The induction of IL-13 and MCP-1 gene expression by IL-1beta was accompanied by the activation of IL-1 receptor-associated kinase and translocation of the transcription factor, nuclear factor (NF) kappaB into the nucleus. Accordingly, Bay-11 7082, an inhibitor of NF-kappaB activation, inhibited IL-1beta-induced IL-13 and MCP-1 expression. IL-1beta also induced IL-13 promoter activity while enhancing the stability of IL-13 messenger RNA transcripts. Dexamethasone, a glucocorticoid, inhibited IL-1beta-induced nuclear translocation of NF-kappaB and also the secretion of IL-13 from mast cells. Our data suggest that IL-1beta can serve as a pivotal costimulus of inflammatory cytokine synthesis in human mast cells, and this may be partly mediated by IL-1 receptor-binding and subsequent signaling via nuclear translocation of NF-kappaB. Because IL-1beta is a ubiquitously expressed cytokine, these findings have important implications for non-IgE-mediated signaling in airway mast cells as well as for innate immunity and airway inflammatory responses, such as observed in extrinsic and intrinsic asthma.
|
Page generated in 0.1008 seconds