• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Glutaredoxin system with the biogenesis of mitochondrial intermembrane space proteins

Tran, Peter January 2016 (has links)
Mitochondrial protein biogenesis depends on the import of nucleus-encoded precursors from the cytosol. Import is highly regulated and specific for different subcompartments, with intermembrane space (IMS) import driven by an oxidative mechanism on conserved cysteine residues. Oxidative folding in the IMS is facilitated by the mitochondria import and assembly (MIA) pathway. Proteins can only be imported into the IMS in Cys-reduced unfolded forms, as oxidation prevents translocation into the IMS. How the import-competent forms are maintained in the cytoplasm is lesser characterised compared to the MIA pathway. Two recent studies suggest that the cytosolic Thioredoxin (Trx) and Glutaredoxin (Grx) reductase systems play a role in facilitating IMS protein import, with previous evidence identifying a role for yeast Trxs in small Tim protein biogenesis. In this study, the redox properties of the yeast Trx and Grx systems were investigated, as well as whether the yeast Grx system play a role in the biogenesis of two typical types of IMS precursor proteins. First, in vitro studies were carried out to determine the standard redox potentials (E°’) of the Trx and Grx enzymes. This was a quantifiable parameter of reducing activity and the results were described in Chapter 3. This study determined the E°’Trx1 value, which was shown to be a more effective reductant compared to other orthologs. Experimental limitations prevented the Grx system E°’ values being determined. Next, whether the Grx plays a role in the biogenesis of the CX3C motif-containing small Tim proteins were investigated using yeast genetic in vivo and biochemical analysis methods. The results were described in Chapter 4. There, Grxs were observed to not affect cell growth, but in using overexpressed Tim9 as an import model, significant differences were observed for the Grx system as GRX deletion significantly decreased overexpressed Tim9 levels. Study on the isolated mitochondria and cytosol with overexpressed Tim9 was unclear however. This study also observed a genetic interaction between GRX andYME1 that recovered cell functioning under respiratory conditions. Finally, whether the Grx system plays a role in the biogenesis of CX9C motif-containing proteins (Mia40, Mia40C and Cox17) was studied in Chapter 5. Whilst Mia40C (C-domain of Mia40) and Cox17 are imported into mitochondria via the MIA pathway, the full-length Mia40 is a substrate of the presequence-targeted TIM23 pathway. The results indicated that import of the full-length Mia40 was unaffected by GRX deletion. However, studies of an overexpressed Mia40C as a substrate of the MIA pathway, showed strong mitochondrial protein level decreases caused by deletion of the Grx proteins. This decrease was also accompanied by an accumulation of unimported Mia40C in the cytosol. Cox17 as an alternative MIA pathway substrate also showed decreased mitochondrial levels in the GRX deletion mutants. These results altogether suggest that the cytosolic Grx system can function in the biogenesis of CX9C motif-containing IMS proteins imported through the MIA pathway, as well as the CX3C small Tim proteins. The topic of how IMS proteins are degraded in the cell was also raised by the study of Yme1.
2

Polymères confinés dans des mésophases lamellaires lyotropes / Polymers confined in lyotropic lamellar mesophases

Herrmann, Laure 20 September 2013 (has links)
Ce travail porte sur l’étude de mésophases lamellaires lyotropes qui contiennent des polymères hydrosolubles confinés dans les lamelles d’eau de l’empilement. L’effet du polymère confiné sur la stabilité de la structure lamellaire est en particulier étudié grâce à une mesure directe des interactions entre les membranes de tensioactif grâce la technique du Surface Force Apparatus (SFA). Les systèmes étudiés sont des fluides complexes et très visqueux ce qui a donné lieu au développement d’une nouvelle méthode pour analyser les données collectées. En l’absence de polymère dissous dans l’empilement lamellaire, la valeur du module de compressibilité élastique mesurée est remarquablement interprétée avec la théorie électrostatique corrigée des corrélations des contre-ions. En présence de polymère, au fur et à mesure que les macromolécules remplacent le contenu en eau, le module élastique de compressibilité de l’empilement lamellaire chute,signature d’une interaction attractive due à la présence des macromolécules. Néanmoins, les développements théoriques proposés ne parviennent pas à interpréter quantitativement cette décroissance. De plus, des comportements très intéressants et inattendus ont été mis en évidence lors de l’approche d’un point critique : la présence de dislocations de très grands vecteurs de Burgers à grande séparation ainsi que des phénomènes d’avalanches. En particulier, des énergies de nucléation de dislocation ont pu être extraites. / This work deals with lyotropic lamellar mesophases which contain confined hydrosoluble polymers in the water layers of the stack. In particular the effect of confined polymers on the stability of the lamellar structure is investigated through a direct measurement of the interactions between the surfactant membranes thanks to the Surface Force Apparatus (SFA) technique. The investigated systems are complex fluids and samples are extremely viscous, this is why a new procedure for analyzing the collected data has been developed. In the absence of dissolved polymer in the lamellar stack, the measured value of the elastic compressibility modulus is remarkably interpreted with the electrostatic interaction corrected from the counterions correlations. In the presence of polymer, as long as the macromolecules replace the water content the elastic compressibilitymodulus of the lamellar stack decreases, evidencing an attractive interaction due to the macromolecules. Nevertheless, the proposed theoretical developments fail to quantitatively interpret this drop. Moreover, very interesting and unexpected phenomena have been evidenced on the approach of one critical point: dislocations of large Burgers vectors at large separations and avalanche phenomena. In particular dislocation nucleation energies have been extracted.

Page generated in 0.0738 seconds