51 |
HYDRATE PARTICLES ADHESION FORCE MEASUREMENTS: EFFECTS OF TEMPERATURE, LOW DOSAGE INHIBITORS, AND INTERFACIAL ENERGYTaylor, Craig J., Dieker, Laura E., Miller, Kelly T., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Micromechanical adhesion force measurements were performed on tetrahydrofuran (THF) hydrate particles in n-decane. The experiments were performed at atmospheric pressure over the temperature range 261–275 K. A scoping study characterized the effects of temperature, anti-agglomerants, and interfacial energy on the particle adhesion forces. The adhesion force between hydrate particles was found to increase with temperature and the interfacial energy of the surrounding liquid. The adhesion force of hydrates was directly proportional to the contact time and contact force. Both sorbitan monolaurate (Span20) and poly-N-vinyl caprolactam (PVCap) decreased the adhesion force between the hydrate particles. The measured forces and trends were explained by a capillary bridge between the particles.
|
52 |
IN SITU NMR MEASUREMENT OF CH4 + C2H6 HYDRATE REFORMATIONOhno, Hiroshi, Dec, Steven F., Sloan, E. Dendy, Koh, Carolyn A. 07 1900 (has links)
The reformation of methane-ethane hydrate was observed in situ using 13C MAS NMR spectroscopy. In all reformation experiments, structure I (stable state for the reformation conditions) reformed, and the hydrate cage occupancy ratios were found to be almost the same as those predicted by a statistical thermodynamics program CSMGem, suggesting that there is no preferential formation of large or small cages on the relatively long time scale of this NMR experiment. It was also found that the reformation rate of the sample with PVCap is several times faster compared with the pure system, indicating that the presence of PVCap promotes the hydrate reformation at a high subcooling though this chemical is well-known as a good hydrate inhibitor.
|
53 |
MACROSCOPIC INVESTIGATION OF HYDRATE FILM GROWTH AT THE HYDROCARBON/WATER INTERFACETaylor, Craig J., Miller, Kelly T., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Hydrate film growth has been examined at the hydrocarbon/water interface for cyclopentane and methane hydrate. Video microscopy was used to measure hydrate film thickness, propagation rate across the hydrocarbon/water interface and gas consumption measurements characterized the hydrate formation mechanism. Cyclopentane and methane hydrate film formation were measured over the temperature range of 260–279K and pressure range of atmospheric to 8.3MPa. Hydrate formation was initiated by the propagation of a thin, porous film across the hydrocarbon/water interface. The propagation rate and thickening of the hydrate film was strongly dependent on the hydrate former solubility in the aqueous phase, in the absence and presence of hydrate. Cyclopentane hydrate film thickness began at ~12 μm and grew to a final thickness (15–40 μm) which increased with subcooling. Methane hydrate film thickness began at ~ 5 μm and grew to a final thickness (20–100 μm) which also increased with subcooling. The hydrate film grew into the water phase. Gas consumption measurements indicated that the aqueous phase supplied hydrate former during the initial hydrate growth, and the free gas supplied the hydrate former for film thickening and development. Hydrate film formation at the hydrocarbon/water interface was proposed to consist of three consecutive stages: propagation, development and bulk conversion.
|
54 |
NEUTRON DIFFRACTION AND EPSR SIMULATIONS OF THE HYDRATION STRUCTURE AROUND PROPANE MOLECULES BEFORE AND DURING GAS HYDRATE FORMATIONAldiwan, N.H., Lui, Y., Soper, A.K., Thompson, H., Creek, J.L., Westacott, R.E., Sloan, E. Dendy, Koh, Carolyn A. 07 1900 (has links)
Fundamental understanding of the structural changes occurring during hydrate formation and inhibition is
important in the development of new strategies to control hydrates in flowlines and in inhibitor design.
Neutron diffraction coupled with Empirical Potential Structure Refinement (EPSR) simulation has been
used to determine the hydration structure around propane molecules before and during sII hydrate
formation. The EPSR simulation results were generated by fitting neutron data (with H/D isotopic
substitution) obtained from the SANDALS diffractometer at ISIS. Using this combination of techniques,
the structural transformations of water around propane can be studied during propane (sII) hydrate
formation. The hydration structure was found to be different in the liquid phases of the partially formed
propane hydrate compared to that before any hydrate formation. The effect of a kinetic hydrate inhibitor,
poly-N-pyrrolidone on the hydration structure was also examined. No significant effect was observed on the
water structure in the presence of this inhibitor.
|
55 |
PRELIMINARY REPORT ON THE ECONOMICS OF GAS PRODUCTION FROM NATURAL GAS HYDRATESWalsh, Matt, Hancock, Steve H., Wilson, Scott, Patil, Shirish, Moridis, George J., Boswell, Ray, Collett, Timothy S., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Economic studies on simulated natural gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, large-scale production of natural gas from North American arctic region Class 1 and Class 2 hydrate deposits will be economically acceptable at gas prices over $CDN2005 10/Mscf and $CDN2005 17/Mscf, respectively, provided the cost of building a pipeline to the nearest distribution point is not prohibitively expensive. These estimates should be seen as rough lower bounds, with positive error bars of $5 and $10, respectively. While these prices represent the best available estimate, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. Class 1 hydrate deposits may be economically viable at a lower natural gas price due largely to the existing free gas, which can be produced early in project lifetimes. Of the deposit types for which hydrates are the sole source of hydrocarbons (i.e. Class 2, 3, and 4 deposits), theoretical simulation studies imply that Class 2 deposits may be the most likely to be economically viable (with all else equal) due to assistance that removal of the underlying free water will provide to depressurization; thus $CDN2005 17/Mscf can be seen as a lower bound on the natural gas price that may render hydrate deposits economically acceptable in the absence of free gas. Results from a recent analysis of the production of gas from marine hydrate deposits are also considered in this report [6]. On a rate-or-return (ROR) basis, it is approximately $2008 3/Mscf more expensive to produce from a Class 3 marine hydrates than a conventional marine gas reservoir of similar size.
|
56 |
RAMAN SPECTROSCOPIC STUDIES OF HYDROGEN CLATHRATE HYDRATESStrobel, Timothy A., Koh, Carolyn A., Sloan, E. Dendy 07 1900 (has links)
Raman spectroscopic measurements of various hydrogen bearing clathrate hydrates have been performed under high (< 1cm-1) and low resolution (>2 cm-1) conditions. Raman bands for hydrogen in most common clathrate hydrate cavities have been assigned. Unlike most clathrate hydrate guests, the general observation is no longer valid that the larger the clathrate cavity in which a guest resides, the lower the vibrational frequency. This is rationalized by the multiple hydrogen occupancies in larger clathrate cavities. Both the roton and vibron bands for hydrogen clathrates illuminate interesting quantum dynamics of the enclathrated hydrogen molecules. At 77K, the progression from ortho to para H2 occurs over a relatively slow time period (days). The para contribution to the roton region of the spectrum exhibits the triplet splitting also observed in solid para H2. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature and with isotopic substitution by deuterium. Raman spectra from H2 and D2 hydrates suggest that the occupancy patterns between the two hydrates are analogous. The Raman measurements demonstrate that this is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.
|
57 |
RAMAN STUDIES OF METHANE-ETHANE HYDRATE STRUCTURAL TRANSITIONOhno, Hiroshi, Strobel, Timothy A., Dec, Steven F., Sloan, E. Dendy, Koh, Carolyn A. 07 1900 (has links)
The inter-conversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. To investigate factors controlling the inter-conversion, the rate of structural transition was measured at 59% and 93% methane in ethane. The observed slower structural conversion rate in the lower methane concentration atmosphere can be explained in terms of the differences in kinetics (mass transfer of gas and water rearrangement). Also, the effect of kinetic hydrate inhibitors, poly-N-vinylpyrrolidone (PVP) and polyethylene-oxide (PEO), on the hydrate metastability was investigated at 65% and 93% methane in ethane. PVP increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable), but retarded the rate at 93% methane in ethane (sII is thermodynamically stable), indicating that the function of PVP depends on hydrate structure. PEO did not affect the structural transition considerably for either methane-ethane compositions.
|
58 |
STANDARDIZATION AND SOFTWARE INFRASTRUCTURE FOR GAS HYDRATE DATA COMMUNICATIONSKroenlein, K., Löwner, R., Wang, W., Dikya, V., Smith, T., Muznya, C.D, Chiricoa, R.D., Kazakov, A., Sloan, E. Dendy, Frenkel, M. 07 1900 (has links)
Gas Hydrates Markup Language (GHML) has been under development since 2003 by the
CODATA Task Group “Data for Natural Gas Hydrates” as an international standard for data
storage and transfer in the gas hydrates community. We describe the development of this evolving
communication protocol and show examples of its implementation. In describing this protocol,
we concentrate on the most recent updates that have enabled us to include ThermoML, the widely
used IUPAC XML communication standard for thermodynamic data, into the GHML schema for
the representation of all gas hydrate thermodynamic data. In addition, a new GHML element for
the description of crystal structures is described. We then demonstrate a new tool - Guided Data
Capture for Gas Hydrates - for the rapid capture of large amounts of data into GHML format.
This tool is freely available and publicly licensed for use by any gas hydrate data producer or
collector interested in using the GHML format. An effort will be made to achieve a consensus
between scientific journals publishing thermophysical and structural data for gas hydrates to
recommend their authors use this new software tool in order to generate GHML data files at the
time of the submission of scientific articles. Finally, we will demonstrate how this format can be
used to advantage when accessing data from a web-based resource by showing on-line access to
GHML files for gas hydrates through a web service.
|
59 |
SWAPPING CARBON DIOXIDE FOR COMPLEX GAS HYDRATE STRUCTURESPark, Youngjune, Cha, Minjun, Cha, Jong-Ho, Shin, Kyuchul, Lee, Huen, Park, Keun-Pil, Juh, Dae-Gee, Lee, Ho-Young, Kim, Se-Joon, Lee, Jaehyoung 07 1900 (has links)
Large amounts of CH4 in the form of solid hydrates are stored on continental margins and in
permafrost regions. If these CH4 hydrates could be converted into CO2 hydrates, they would serve
double duty as CH4 sources and CO2 storage sites. Herein, we report the swapping phenomena
between global warming gas and various structures of natural gas hydrate including sI, sII, and sH
through 13C solid-state nuclear magnetic resonance, and FT-Raman spectrometer. The present
outcome of 85% CH4 recovery rate in sI CH4 hydrate achieved by the direct use of binary N2 +
CO2 guests is quite surprising when compared with the rate of 64 % for a pure CO2 guest attained
in the previous approach. The direct use of a mixture of N2 + CO2 eliminates the requirement of a
CO2 separation/purification process. In addition, the simultaneously-occurring dual mechanism of
CO2 sequestration and CH4 recovery is expected to provide the physicochemical background
required for developing a promising large-scale approach with economic feasibility. In the case of
sII and sH CH4 hydrates, we observe a spontaneous structure transition to sI during the
replacement and a cage-specific distribution of guest molecules. A significant change of the
lattice dimension due to structure transformation induces a relative number of small cage sites to
reduce, resulting in the considerable increase of CH4 recovery rate. The mutually interactive
pattern of targeted guest-cage conjugates possesses important implications on the diverse hydratebased
inclusion phenomena as clearly illustrated in the swapping process between CO2 stream
and complex CH4 hydrate structure.
|
60 |
Experimental Verifications of Abnormal Chlorinity appearing in Natural Deep-Sea Gas HydrateSeol, Jiwoong, Koh, Dongyeon, Cha, Minjun, Lee, Huen, Lee, Youngjoo, Kim, Jihoon 07 1900 (has links)
The chloride anion is known to be the most abundant salt ion in sea water. At the regions such as
ODP Sites 1249 and 1250 the highly enriched chloride concentration is observed in a zone
extended from near the sediment surface (~1 mbsf) to depths about 25 mbsf. Here, we designed
the in-situ electric circuit system for measuring chloride concentration within reliable accuracy. In
the cylindrical cell the 5-10 tubes having holes on the wall and electrodes were equipped around
clay mixture. The open holes were made to regulate to a certain degree the interface area between
methane gas and clay sample. As may be anticipated, the chloride concentration abnormally
increased under fast rate condition for forming methane hydrate, but no noticeable concentration
change was detected under relatively low rate. In fact, the present experiment seems to be a lot
deficient to investigate the ion diffusion and moreover does not fully reflect the real deep-sea
floor condition, but the meaningful results for describing the abnormal salinity enrichment might
be drawn. The physical effects of chloride anions on surface morphologies of methane hydrate
formed in the sediments were additionally examined with the Field Emission-Scanning Electronic
Microscope (FE-SEM).
|
Page generated in 0.1256 seconds