• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sampling and Motion Reconstruction in Three-dimensional X-ray Interventional Imaging / Echantillonnage et reconstruction de mouvement en radiologie interventionnelle tridimensionnelle

Langet, Hélène 28 March 2013 (has links)
La pratique clinique a été profondément transformée par l'explosion technologique, ces dernières décades, des techniques d'imagerie médicale. L'expansion de la radiologie interventionnelle a ainsi rendu possible des procédures dites « minimalement invasives » au cours desquelles la thérapie est délivrée directement au niveau de la région pathologique via des micro-outils guidés par imagerie à travers le système vasculaire. Des systèmes dits « C-arm », générant une imagerie rayons X planaire temps-réelle en faible dose, sont utilisés pour le guidage. Ils ont offert plus récemment la possibilité d'une visualisation tridimensionnelle par le biais d'acquisitions tomographiques. C'est dans ce contexte de reconstruction tomographique que s'inscrivent ces travaux de thèse. Ils s'attèlent en particulier à corriger les artefacts de mouvement dus aux variations temporelles des vaisseaux injectés et se concentrent sur un aspect central de la tomographie, à savoir l'échantillonnage angulaire. La théorie du compressed sensing identifie les conditions sous lesquelles des données sous-échantillonnées peuvent être reconstruites en minimisant une fonctionnelle qui combine un terme de fidélité quadratique et une contrainte parcimonieuse. S'appuyant sur cette théorie, un formalisme original de reconstruction est proposé : il repose sur la rétroprojection filtrée itérative, les algorithmes proximaux, la minimisation de normes L1 et l'homotopie. Ce formalisme est ensuite dérivé pour intégrer différentes contraintes spatiales et temporelles. Une telle stratégie s'avère plus performante que la rétroprojection filtrée analytique utilisée dans la pratique clinique, permettant la réduction d'artefacts de mouvement et d'échantillonnage dans des cas cliniques bien identifiés de l'imagerie cérébrale et abdominale. Les résultats obtenus soulignent l'une des principales contributions de ce travail, à savoir : l'importance de l'homotopie, en supplément de la régularisation, pour améliorer la qualité image, un gain indispensable dans le domaine d'applicabilité / Medical imaging has known great advances over the past decades to become a powerful tool for the clinical practice. It has led to the tremendous growth of interventional radiology, in which medical devices are inserted and manipulated under image guidance through the vascular system to the pathology location and then used to deliver the therapy. In these minimally-invasive procedures, X-ray guidance is carried out with C-arm systems through two-dimensional real-time projective low-dose images. More recently, three-dimensional visualization via tomographic acquisition has also become available. This work tackles tomographic reconstruction in the aforementioned context. More specifically, it deals with the correction of motion artifacts that originate from the temporal variations of the contrast-enhanced vessels and thus tackles a central aspect of tomography: data (angular) sampling. The compressed sensing theory identifies conditions under which subsampled data can be recovered through the minimization of a least-square data fidelity term combined with sparse constraints. Relying on this theory, an original reconstruction framework is proposed based on iterative filtered backprojection, proximal splitting, `1-minimization and homotopy. This framework is derived for integrating several spatial and temporal penalties. Such a strategy is shown to outperform the analytical filtered backprojection algorithm that is used in the current clinical practice by reducing motion and sampling artifacts in well-identified clinical cases, with focus on cerebral and abdominal imaging. The obtained results emphasize one of the key contributions of this work that is the importance of homotopy in addition to regularization, to provide much needed image quality improvement in the suggested domain of applicability.
2

Sampling and Motion Reconstruction in Three-dimensional X-ray Interventional Imaging

Langet, Hélène 28 March 2013 (has links) (PDF)
Medical imaging has known great advances over the past decades to become a powerful tool for the clinical practice. It has led to the tremendous growth of interventional radiology, in which medical devices are inserted and manipulated under image guidance through the vascular system to the pathology location and then used to deliver the therapy. In these minimally-invasive procedures, X-ray guidance is carried out with C-arm systems through two-dimensional real-time projective low-dose images. More recently, three-dimensional visualization via tomographic acquisition has also become available. This work tackles tomographic reconstruction in the aforementioned context. More specifically, it deals with the correction of motion artifacts that originate from the temporal variations of the contrast-enhanced vessels and thus tackles a central aspect of tomography: data (angular) sampling. The compressed sensing theory identifies conditions under which subsampled data can be recovered through the minimization of a least-square data fidelity term combined with sparse constraints. Relying on this theory, an original reconstruction framework is proposed based on iterative filtered backprojection, proximal splitting, '1-minimization and homotopy. This framework is derived for integrating several spatial and temporal penalties. Such a strategy is shown to outperform the analytical filtered backprojection algorithm that is used in the current clinical practice by reducing motion and sampling artifacts in well-identified clinical cases, with focus on cerebral and abdominal imaging. The obtained results emphasize one of the key contributions of this work that is the importance of homotopy in addition to regularization, to provide much needed image quality improvement in the suggested domain of applicability.
3

The Duodenal Mucosal Bicarbonate Secretion : Role of Melatonin in Neurohumoral Control and Cellular Signaling

Sjöblom, Markus January 2003 (has links)
<p>The duodenal lumen is exposed to aggressive factors with a high potential to cause damage to the mucosa. Bicarbonate secretion by the duodenal mucosa is accepted as the primary important defense mechanism against the hydrochloric acid intermittently expelled from the stomach.</p><p>The present thesis concerns the influence of the central nervous system and the effects of the hormone melatonin on bicarbonate secretion in anesthetized rats in vivo. Effects of melatonin on intracellular calcium signaling by duodenal enterocyte in vitro were examined in tissues of both human and rat origin. The main findings were as follows:</p><p>Melatonin is a potent stimulant of duodenal mucosal bicarbonate secretion and also seems to be involved in the acid-induced stimulation of the secretion. Stimulation elicited in the central nervous system by the α1-adrenoceptor agonist phenylephrine induced release of melatonin from the intestinal mucosa and a four-fold increase in alkaline secretion. The melatonin antagonist luzindole abolished the duodenal secretory response to administered melatonin and to central nervous phenylephrine but did not influence the release of intestinal melatonin. Central nervous stimulation was also abolished by synchronous ligation of the vagal trunks and the sympathetic chains at the sub-laryngeal level. </p><p>Melatonin induced release of calcium from intracellular stores and also influx of extracellular calcium in isolated duodenal enterocytes. Enterocytes in clusters functioned as a syncytium.</p><p>Overnight fasting rapidly and profoundly down-regulated the responses to the duodenal secretagogues orexin-A and bethanechol but not those to melatonin or vasoactive intestinal polypeptide.</p><p>In conclusion, the results strongly suggest that intestinal melatonin plays an important role in central nervous elicited stimulation of duodenal mucosal bicarbonate secretion. Sensitivity of this alkaline secretion to some peripheral stimulators markedly depends on the feeding status.</p>
4

The Duodenal Mucosal Bicarbonate Secretion : Role of Melatonin in Neurohumoral Control and Cellular Signaling

Sjöblom, Markus January 2003 (has links)
The duodenal lumen is exposed to aggressive factors with a high potential to cause damage to the mucosa. Bicarbonate secretion by the duodenal mucosa is accepted as the primary important defense mechanism against the hydrochloric acid intermittently expelled from the stomach. The present thesis concerns the influence of the central nervous system and the effects of the hormone melatonin on bicarbonate secretion in anesthetized rats in vivo. Effects of melatonin on intracellular calcium signaling by duodenal enterocyte in vitro were examined in tissues of both human and rat origin. The main findings were as follows: Melatonin is a potent stimulant of duodenal mucosal bicarbonate secretion and also seems to be involved in the acid-induced stimulation of the secretion. Stimulation elicited in the central nervous system by the α1-adrenoceptor agonist phenylephrine induced release of melatonin from the intestinal mucosa and a four-fold increase in alkaline secretion. The melatonin antagonist luzindole abolished the duodenal secretory response to administered melatonin and to central nervous phenylephrine but did not influence the release of intestinal melatonin. Central nervous stimulation was also abolished by synchronous ligation of the vagal trunks and the sympathetic chains at the sub-laryngeal level. Melatonin induced release of calcium from intracellular stores and also influx of extracellular calcium in isolated duodenal enterocytes. Enterocytes in clusters functioned as a syncytium. Overnight fasting rapidly and profoundly down-regulated the responses to the duodenal secretagogues orexin-A and bethanechol but not those to melatonin or vasoactive intestinal polypeptide. In conclusion, the results strongly suggest that intestinal melatonin plays an important role in central nervous elicited stimulation of duodenal mucosal bicarbonate secretion. Sensitivity of this alkaline secretion to some peripheral stimulators markedly depends on the feeding status.
5

Engineered Tracking and Delivery of Mesenchymal Stem Cells (MSCs)

Lin, Paul 08 March 2013 (has links)
No description available.

Page generated in 0.0926 seconds