• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Reaction Mechanisms of Metalloenzymes and Synthetic Model Complexes Activating Dioxygen : A Computational study

Georgiev, Valentin January 2009 (has links)
Quantum chemistry has nowadays become a powerful and efficient tool that can be successfully used for studies of biosystems. It is therefore possibleto model the enzyme active-site and the reactions undergoing into it, as well as obtaining quite accurate energetic profiles. Important conclusions can be drawn from such profiles about the  plausibility of different putative mechanisms. Density Functional Theory is used in the present thesis for investigation of the catalytic mechanism of dioxygenase metallo-enzymes and synthetic model complexes. Three enzymes were studied – Homoprotocatechuate 2,3-dioxygenase isolated from Brevibacterium fuscum (Bf 2,3-HPCD), Manganese-Dependent Homoprotocatechuate 2,3-Dioxygenase (MndD) and Homogentisate Dioxygenase (HGD). Models consisting of 55 to 208 atoms have been built from X-ray crystal structures and used in the calculations. The computed energies were put in energy curves and were used for estimation of the feasibility of the suggested reaction mechanisms. A non-heme [(L4Me4)Fe(III)]+3 complex that mimics the reactivity of intradiol dioxygenases, and a heme [T(o-Cl)PPFe] complex catalyzing the stepwise oxidation of cyclohexane to adipic acid, were also studied. For the enzymes and the non-heme biomimetic complex the reaction was found to follow a mechanism that was previously suggested for extradiol and intradiol dioxygenases – ordered substrates binding and formation of peroxo species, which further undergoes homolytic O-O bond cleavage. Different reaction steps appear to be rate limiting in the particular cases: proton transfer from the substrate to the peroxide in Bf 2,3-HPCD, the formation of the peroxo bridge in HGD and the biomimetic complex, and notably, spin transition in MndD. The catalytic oxidation of cyclohexane to adipic acid in the presence of molecular oxygen as oxidant was studied, a reaction of great importance for the chemical industry. Reaction mechanism is suggested, involving several consecutive oxidative steps. The highest calculated enthalpy of activation is 17.8 kcal/mol for the second oxidative step. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In progress, Paper 5: In progress
2

Biomimetic Iron Complexes involved in Oxygenation and Chlorination : A Theoretical Study

Noack, Holger January 2010 (has links)
Biomimetic chemistry is directed towards the simulation of enzymatic reactivity with synthetic analogues. In this thesis a quantum chemical method has been employed to study the mechanism of highly reactive iron-oxo complexes involved in oxygenation and chlorination of organic substrates. The aim of this research is to gain greater understanding for the reactivity paradigm of the iron-oxo group. One reaction deals with the conversion of cyclohexane into adipic acid, a key chemical in industrial chemistry, catalyzed by an iron(II)-porphyrin complex in the presence of dioxygen. This process constitutes a ’green’ alternative to conventional adipic acid production, and is thus of great interest to synthetic chemistry. Another reaction investigated herein regards the selective chlorination observed for a new group of non-heme iron enzymes. With help of theoretical modeling it was possible to propose a mechanism that explains the observed selectivity. It is furthermore demonstrated how a biomimetic iron complex simulates the enzymatic reactivity by a different mechanism. Other topics covered in this thesis regard the structure-reactivity relationship of a binuclear iron complex and the intradiol C-C bond cleavage of catechol catalyzed by an iron(III) complex. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Submitted. Paper 2: Accepted. Paper 3: Submitted.

Page generated in 0.0544 seconds