• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interfascicular Interfaces for Peripheral Nerve Stimulation: Directed Stimulation within the Epineurial Space

Koppaka, Smruta 23 August 2013 (has links)
No description available.
2

The Effect of Force, Posture, and Repetitive Wrist Motion on Intraneural Blood Flow in the Median Nerve

Ehmke, Samantha Grace January 2016 (has links)
Many epidemiological studies have named pinching, deviated wrist postures, and repetitive motion as ergonomic risk factors in the development of carpal tunnel syndrome (CTS). Evidence suggests that hypervascularization of the median nerve and increased intraneural blood flow proximal to the carpal tunnel result in response to ergonomic risk factors (finger pressing and deviated wrist postures). The purposes of this study were to 1) determine the effect of a pinch posture, with and without force exerted by the finger, thumb, or both and 2) determine the effect of repetitive wrist flexion and extension on intraneural blood flow velocity in the median nerve proximal to the carpal tunnel. Eleven healthy and eleven CTS symptomatic individuals participated in this study and completed three components: 15 pinch posture force trials, 3 repetitive wrist motion trials, and 3 static wrist posture trials. Intraneural blood flow was measured using pulse wave Doppler during each trial. Main effects of pinch posture force (F4,80 = 21.397, p < 0.001) and wrist posture (F2,40 = 14.545, p < 0.001) were observed. Trials where force was applied by the finger (2.21 cm/s), thumb (2.22 cm/s) or both (2.34 cm/s) produced higher intraneural blood flow velocities than trials with no force (1.79 cm/s) or relaxed hand (1.89 cm/s). Trials performed in flexion (2.24 cm/s) were greater than neutral (2.06 cm/s) and extension (1.97 cm/s). No interactions or main effects of time were found in response to repetitive wrist motion. These results suggest that at low force levels (6 N) it’s not how the force is applied but rather that the force is being applied that has an effect on the median nerve. Additionally these results suggest that the contribution of repetitive motion to the development of CTS may not be directly to the median nerve. / Thesis / Master of Science (MSc)
3

Developing a method for insertion of soft neural probes into peripheral nerves

Melander, Klara January 2022 (has links)
The main objective of this project was to develop a method for soft neural probe insertion into a nerve. These soft probes are made of a silicon elastomer that is a few orders of magnitude less stiff than the nerve, which makes the insertion process particularly challenging. To overcome this challenge a tungsten microwire was used as an insertion shuttle to help penetrate the nerve by increasing the overall stiffness of the probe. At a first stage, the insertion process was tested on a nerve phantom (e.g. agarose gel with PDMS membrane) to control the insertion parameters and validate the insertion platform. Once the envisioned insertion method was established, the probe was implanted in a real rodent nerve. / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
4

EFFECT OF WRIST POSTURE AND FINGERTIP FORCE ON MEDIAN NERVE BLOOD FLOW VELOCITY

Wilson, Elizabeth Katherine 10 1900 (has links)
<p>Carpal tunnel syndrome (CTS) is one of the most prevalent work-related musculoskeletal disorders of the upper extremity yet its etiology remains elusive. Nerve hypervascularization has been proposed as a pathophysiological change in CTS and can be measured using high resolution sonography of intraneural blood flow. The purpose of this study was to determine the effects of deviated wrist postures and fingertip force on the intraneural blood flow velocity of the median nerve proximal to the wrist crease. Ten participants experiencing the classic symptoms of CTS and nine healthy volunteers were recruited and underwent qualitative assessments (Phalen’s test, Katz hand diagram, Levine’s CTS questionnaire). Intraneural blood flow velocity was measured in five wrist postures (flexion 30°, flexion 15°, neutral, extension 15°, extension 30°) with and without a middle digit fingertip press (0N, 6N). A control (N=9) group and a CTS symptomatic (N=9) group were determined, in addition to a CTS individual (N=1) that required a separate analysis. A significant main effect of force was found (F<sub>1,16 </sub>= 28.039, p < 0.0005) with the mean peak velocity being greater with force (3.56 cm/s) than without force (2.81 cm/s). Wrist posture had a main effect (F<sub>4,64 </sub>= 3.163, p < 0.020) with flow velocity as neutral (2.87 cm/s) was significantly lower than flexion 30° (3.37 cm/s), flexion 15°(3.27 cm/s) and extension 30° (3.29 cm/s). There was no significant difference in peak blood flow velocity between the two experimental groups, CTS symptomatic (3.34 cm/s) and control (3.03 cm/s) (F<sub>1,16 </sub>= 4.121, p < 0.059). The results suggest that both force and non-neutral wrist postures may acutely induce vascular changes previously associated with CTS. The quantification of reactive median nerve hypervascularity should be investigated further as it has potential to be both a reliable diagnostic technique and a non-invasive assessment of CTS risk.</p> / Master of Science in Kinesiology
5

Optimization of High Density Nerve Cuff Stimulation in Upper Extremity Nerves

Brill, Natalie Amber 06 February 2015 (has links)
No description available.
6

Biocompatible polymer coatings for implants in the peripheral nervous system : in vivo study of polymer-coated microbeads in the rat sciatic model

Cheung, Vincent W. 08 1900 (has links)
Introduction: Les implants dans le système nerveux périphérique (SNP) peuvent potentiellement restaurer les capacités sensorielles et motrices chez les patients avec des amputations des membres supérieures. Cependant, la réaction à un corps étrangers affecte significativement la fonction à long-terme et la biocompatibilité de ces systèmes avec le temps. Le dendrimère (DND) et la Poly-D-Lysine (PDL) sont deux polymères synthétiques qui peuvent potentiellement améliorer la performance de ces implants. Pour cette étude, notre objectif est de déterminer si ces polymères peuvent promouvoir la formation d’éléments présynaptiques sur des surfaces synthétiques in vivo dans un modèle animal. Méthodes: Pour l’étude in vivo, nous avons utilisé un modèle d’écrasement du nerf sciatique chez le rat. Des billes enduites de DND et PDL et contrôle ont été injectées dans le nerf sciatique aux sites d’écrasement et 5 mm distaux au site d’écrasement. Après 4, 6 et 8 semaines, les nerfs ont été retirés et marqués avec des anticorps spécifiques au neurofilament et à la synaptophysine. Nous avons ensuite compté le nombre d’éléments présynaptiques retrouvant sur la surface de chaque bille pour toutes les conditions. Pour l’étude de l’électrode, deux électrodes ont été implantées dans le nerf sciatique du rat. Nous avons ensuite effectué des enregistrements nerveux à chaque semaine, et le potentiel d’action dans le nerf a été mesuré en variant uniquement la largeur de l’impulsion. Résultats: L’étude in vivo a démontré que les billes enduites de DND pouvaient promouvoir une accumulation significative de synaptophysine sur leurs surfaces comparé aux billes contrôles de 4 à 8 semaines. À 4 semaines, les billes dans la condition DND avaient également une accumulation de synaptophysine significativement supérieure à celles dans la condition PDL pour le site distal à l’écrasement. L’étude de l’électrode a démontré que les deux électrodes pouvaient stimuler et acquérir des signaux nerveux du nerf sciatique jusqu’à 1 et 2 semaines respectivement avant de ne plus fonctionner. Conclusion: Les résultats de notre étude suggèrent que DND possède une propriété à promouvoir la synaptogenèse qui est supérieure à PDL in vivo et que notre modèle d’électrode peut être utilisé pour évaluer la stabilité du signal des implants SNP. / Background: Implants in the peripheral nervous system (PNS) can potentially restore sensory feedback, improve motor control and alleviate phantom-limb pain in upper-limb amputees. However, nervous system implants have poor long-term function and biocompatibility when implanted into the body due to foreign body reaction. Dendrimer (DND) and Poly-D-Lysine (PDL) are two synthetic polymers with properties that could improve the performance of these interfaces. In my masters’ research, my objective is to determine whether these synthetic polymers could promote the formation of presynaptic elements on artificial surfaces in vivo making intraneural implants more biocompatible and long-lasting. Methods: In the coated microsphere in vivo experiment, a nerve crush injury model in the rat was used for the study. PDL-coated, DND-coated and uncoated beads were injected into the rat sciatic nerve at the crush site and 5 mm distal to the crush site. The nerves were then harvested after 4, 6 and 8 weeks and stained for neurofilament and synaptophysin. Synaptophysin puncta were then counted on the bead surface for each group. Additionally, in a proof-of-concept experiment, two uncoated electrodes were implanted into the rat sciatic nerve. Nerve recordings were then performed every week, and the threshold nerve potential in the sciatic nerve was measured by only varying the pulse duration of the stimulation. Results: The coated microsphere in vivo experiment demonstrated that DND-coated microspheres had a significantly higher number of synaptophysin puncta around their surface from 4 to 8 weeks compared to uncoated beads. At 4 weeks, the DND condition also showed a significantly higher number of synaptophysin puncta around its microbeads vs. the PDL condition for the distal site. In the uncoated electrode in vivo experiment, the results showed that the two implants could stimulate and record threshold nerve potentials in the rat sciatic nerve for one week and two weeks respectively before being non-functional. Conclusion: Our study showed for the first time that DND has a stable synapse-promoting property that is superior to PDL in vivo and that our electrode design can be used to assess the long-term signal stability of peripheral nerve implants.

Page generated in 0.1631 seconds