• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimizations of Battery-Based Intrusion Protection Systems

Nelson, Theresa Michelle 03 June 2008 (has links)
As time progresses, small mobile devices become more prevalent for both personal and industrial use, providing malicious network users with new and exciting venues for security exploits. Standard security applications, such as Norton Antivirus and MacAfee, require computing power, memory space, and operating system complexity that are not present in small mobile devices. Recently, the Battery-Sensing Intrusion Protection System (B-SIPS) was devised as a means to correct the inability of small mobile devices to protect themselves against network attacks. The B-SIPS application uses smart battery data in conjunction with process and network information to determine whether the mobile device is experiencing a battery depletion attack. Additionally, B-SIPS provides mobile device statistics to system administrators such that they can analyze the state of the wireless network more thoroughly. The research presented in this thesis collaborates with and extends the B-SIPS research through optimizations and validation. Areas of focus include ensuring public acceptance of the application through the implementation of a usability study and verifying that the deployment of the application will not jeopardize the performance of external mobile device applications. Additionally, this thesis describes how GUI optimizations are realized for both the B-SIPS client and CIDE server, how future smart battery hardware implementations are introduced for increased effectiveness with the B-SIPS application, and it discusses how an optimum deployment data transmission period is determined. / Master of Science

Page generated in 0.1325 seconds