• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 36
  • 22
  • 6
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 163
  • 163
  • 39
  • 26
  • 26
  • 24
  • 21
  • 19
  • 19
  • 19
  • 16
  • 15
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modifying an architecture for interface customisation support

Nilsson, Martin Persson and Johan January 2002 (has links)
This work is an investigation of how a software architecture can be changed in order to improve the support of the creation of a customised user interface. The parts of Symbian OS that are of interest for the work are described in detail. Then a comparison of the user interfaces of four different mobile devices is made, in order to get a picture of what the interfaces of such devices could look like. Also presented in the work is a modified reference architecture that supports customisation of all the features that have been identified in the comparison. Finally, the authors discuss how well the new architecture supports customisation of the user interface compared to the original Symbian OS architecture.
2

Optimizations of Battery-Based Intrusion Protection Systems

Nelson, Theresa Michelle 03 June 2008 (has links)
As time progresses, small mobile devices become more prevalent for both personal and industrial use, providing malicious network users with new and exciting venues for security exploits. Standard security applications, such as Norton Antivirus and MacAfee, require computing power, memory space, and operating system complexity that are not present in small mobile devices. Recently, the Battery-Sensing Intrusion Protection System (B-SIPS) was devised as a means to correct the inability of small mobile devices to protect themselves against network attacks. The B-SIPS application uses smart battery data in conjunction with process and network information to determine whether the mobile device is experiencing a battery depletion attack. Additionally, B-SIPS provides mobile device statistics to system administrators such that they can analyze the state of the wireless network more thoroughly. The research presented in this thesis collaborates with and extends the B-SIPS research through optimizations and validation. Areas of focus include ensuring public acceptance of the application through the implementation of a usability study and verifying that the deployment of the application will not jeopardize the performance of external mobile device applications. Additionally, this thesis describes how GUI optimizations are realized for both the B-SIPS client and CIDE server, how future smart battery hardware implementations are introduced for increased effectiveness with the B-SIPS application, and it discusses how an optimum deployment data transmission period is determined. / Master of Science
3

Extended Model for the Early Skin Cancer Detection Using Image Processing

Poma, Jonathan Miguel Campos, Dominguez, Emily Yanira De La Cruz, Armas-Aguirre, Jimmy, Gonzalez, Leonor Gutierrez 01 June 2020 (has links)
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado. / In this research paper, we proposed an extended model for the early detection of skin cancer... The purpose is reduce the waiting time to obtaining a diagnosis, in addition, the function of the dermatoscope has been digitized by using a Smartphone and magnifying lenses as an accessory the mobile device. The proposed model has five phases: 1. The patient is attended by a general practitioner or nurse previously trained in any health center which has WiFi or mobile network connectivity to record their data and capture the skin lesion that will be analyzed. 2) The image will be in the cloud storage, which at the same time feeds an exclusive access website of dermatologists.3) Images are analyzed in real time using an image recognition service provided by IBM, which is integrated into a cloud-hosted web platform and an-Android application. 4)The result of the image processing is visualized by the dermatologist who makes a remote diagnosis.5) This diagnosis is received by the general practitioner or nurse, responsible for transmitting the diagnosis and treatment to the patient. This model was validated in a group of 60 patients, where 28 suffer from skin cancer in the early stage, 12 in the late stage and 20 are healthy patients, in a network of clinics in Lima, Peru. The obtained result was 97.5% of assertiveness on the analyzed skin lesions and 95% in healthy patients. / Revisión por pares
4

Chameleon Interference: Assessing Vulnerability of Magnetic Sensors to Spoofing and Signal injection attacks through Environmental interference in Mobile Devices

Gleason, David Theodore 06 January 2023 (has links)
Embedded sensors are a fixture of most devices in the current computer industry. These small devices are used for a variety of purposes throughout many fields to collect whatever kind of information is needed by the user. From data on device acceleration to data on position relative to the Earth's magnetic field, embedded sensors can provide it for any number of tasks. The advent of these devices has made work and research in the computer industry significantly easier but they are not without their drawbacks. Most of these sensors operate by drawing external data from the environment through send and receive signals. This mode of operation leaves them vulnerable to external malicious users who seek access to the data being stored and handled by the sensors. Concerns over security and privacy of embedded sensor data has become a topic of great concern with the continued digitization of sensitive personal data. Within the last five years, studies have shown the ability to manipulate embedded magnetic sensors in order to gain access to various forms of sensitive personal data. This is of great concern to the developers of mobile devices as most mobile devices possess embedded magnetic sensors. The vulnerability of sensors to external influence leads to concerns for both data privacy and degradation of public trust in the ability of their devices to keep their personal information safe and out of the wrong hands. Degradation of public trust in security methodologies is a major concern to many in the research and tech industry as much of the work conducted to advance both security and technology depends on large amounts of public data. If the public loses trust in the ability of the devices used by researchers to protect and ensure the safety of the data provided to them, then they may stop providing data which would then make the work of researchers and other tech workers considerably more difficult. To address these concerns, this thesis will present an introduction to Magnetic sensor devices (a prominent tool for data collection), how these sensors work and the ways they handle data. We shall then examine the techniques used to interfere with the functioning and output of magnetic sensors employed by mobile devices. Finally, we shall examine existing techniques for defending against these kinds of attacks as well as propose potential new techniques. The end goal of this work is to provide a broader perspective on the nature of environmental/natural interference and its relationship to scientific study and technological advancement. Literature around this topic does exist, however, all existing works currently in the literature focus exclusively on one form of interference i.e., light which leads to a smaller/narrower perspective which this work seeks to remedy. The end result is meant to give a broader perspective of multiple forms of interference and their interrelations between each other than is possible by current perspectives due to their narrow lens. / Master of Science / Embedded sensors are small devices integrated into many mobile devices currently in the public market. These devices serve to collect environmental data of all kinds in order to perform a variety of functions. From directional calibration to magnetic orientation in relation to the magnetic north pole, sensors perform it all. This has led to a massive increase in computer power and quality of life for the general public but not without issue. The increase in storing personal/sensitive data to be processed by these devices has prompted a new breed of privacy concerns and problems to confront. In this thesis, we seek to show the influence and effects of five distinct types of interference rooted in the natural world on the functioning of magnetic sensor devices. Through the experiments conducted in this work, it was found that the interference forms of sound, temperature, and electromagnetism could induce a 32-36 percent average decrease in standard deviation in the data being processed by the sensor. Temperature shifting as an interference form also showed the potential for sizeable impacts on sensor functioning in terms of both increases and decreases. The largest decrease in standard deviation observed was 122 percent from the experiments with low temperature shifting. This work shows the incredible power and influence that the forces of nature can have on everyday devices and their need for data from their environment. The results observed from the temperature shift experiments also highlight the danger of leaving temperature based cyber-attacks under researched. The main use of this work is to fill the void in the current literature created by temperature based cyber-attacks and hopefully spur more research to be conducted into this method of cyber threat.
5

Behaviour profiling for mobile devices

Li, Fudong January 2012 (has links)
With more than 5 billion users globally, mobile devices have become ubiquitous in our daily life. The modern mobile handheld device is capable of providing many multimedia services through a wide range of applications over multiple networks as well as on the handheld device itself. These services are predominantly driven by data, which is increasingly associated with sensitive information. Such a trend raises the security requirement for reliable and robust verification techniques of users.This thesis explores the end-user verification requirements of mobile devices and proposes a novel Behaviour Profiling security framework for mobile devices. The research starts with a critical review of existing mobile technologies, security threats and mechanisms, and highlights a broad range of weaknesses. Therefore, attention is given to biometric verification techniques which have the ability to offer better security. Despite a large number of biometric works carried out in the area of transparent authentication systems (TAS) and Intrusion Detection Systems (IDS), each have a set of weaknesses that fail to provide a comprehensive solution. They are either reliant upon a specific behaviour to enable the system to function or only capable of providing security for network based services. To this end, the behaviour profiling technique is identified as a potential candidate to provide high level security from both authentication and IDS aspects, operating in a continuous and transparent manner within the mobile host environment.This research examines the feasibility of a behaviour profiling technique through mobile users general applications usage, telephone, text message and multi-instance application usage with the best experimental results Equal Error Rates (EER) of 13.5%, 5.4%, 2.2% and 10% respectively. Based upon this information, a novel architecture of Behaviour Profiling on mobile devices is proposed. The framework is able to provide a robust, continuous and non-intrusive verification mechanism in standalone, TAS or IDS modes, regardless of device hardware configuration. The framework is able to utilise user behaviour to continuously evaluate the system security status of the device. With a high system security level, users are granted with instant access to sensitive services and data, while with lower system security levels, users are required to reassure their identity before accessing sensitive services.The core functions of the novel framework are validated through the implementation of a simulation system. A series of security scenarios are designed to demonstrate the effectiveness of the novel framework to verify legitimate and imposter activities. By employing the smoothing function of three applications, verification time of 3 minutes and a time period of 60 minutes of the degradation function, the Behaviour Profiling framework achieved the best performance with False Rejection Rate (FRR) rates of 7.57%, 77% and 11.24% for the normal, protected and overall applications respectively and with False Acceptance Rate (FAR) rates of 3.42%, 15.29% and 4.09% for their counterparts.
6

New Product Development in the Mobile Device Industry : Agility as the 10th Success Factor

Vietsch, Rik, de Mol, Jessica January 2010 (has links)
No description available.
7

New Product Development in the Mobile Device Industry : Agility as the 10th Success Factor

Vietsch, Rik, de Mol, Jessica January 2010 (has links)
No description available.
8

{Spatial Tactile Feedback Support for Mobile Touch-screen Devices

Yatani, Koji 12 January 2012 (has links)
Mobile touch-screen devices have the capability to accept flexible touch input, and can provide a larger screen than mobile devices with physical buttons. However, many of the user interfaces found in mobile touch-screen devices require visual feedback. This raises a number of user interface challenges. For instance, visually-demanding user interfaces make it difficult for the user to interact with mobile touch-screen devices without looking at the screen---a task the user sometimes wishes to do particularly in a mobile setting. In addition, user interfaces on mobile touch-screen devices are not generally accessible to visually impaired users. Basic tactile feedback (e.g., feedback produced by a single vibration source) can be used to enhance the user experience on mobile touch-screen devices. Unfortunately, this basic tactile feedback often lacks the expressiveness for generating vibration patterns that can be used to convey specific information about the application to the user. However, the availability of richer information accessible through the tactile channel would minimize the visual demand of an application. For example, if the user can perceive which button she is touching on the screen through tactile feedback, she would not need to view the screen, and can instead focus her visual attention towards the primary task (e.g., walking). In this dissertation, I address high visual demand issues found in existing user interfaces on mobile touch-screen devices by using spatial tactile feedback. Spatial tactile feedback means tactile feedback patterns generated in different points of the user's body (the user's fingers and palm in this work). I developed tactile feedback hardware employing multiple vibration motors on the backside of a mobile touch-screen device. These multiple vibration motors can produce various spatial vibration patterns on the user's fingers and palm. I then validated the effects of spatial tactile feedback through three different applications: eyes-free interaction, a map application for visually impaired users, and collaboration support. Findings gained through the series of application-oriented investigations indicate that spatial tactile feedback is a beneficial output modality in mobile touch-screen devices, and can mitigate some visual demand issues.
9

{Spatial Tactile Feedback Support for Mobile Touch-screen Devices

Yatani, Koji 12 January 2012 (has links)
Mobile touch-screen devices have the capability to accept flexible touch input, and can provide a larger screen than mobile devices with physical buttons. However, many of the user interfaces found in mobile touch-screen devices require visual feedback. This raises a number of user interface challenges. For instance, visually-demanding user interfaces make it difficult for the user to interact with mobile touch-screen devices without looking at the screen---a task the user sometimes wishes to do particularly in a mobile setting. In addition, user interfaces on mobile touch-screen devices are not generally accessible to visually impaired users. Basic tactile feedback (e.g., feedback produced by a single vibration source) can be used to enhance the user experience on mobile touch-screen devices. Unfortunately, this basic tactile feedback often lacks the expressiveness for generating vibration patterns that can be used to convey specific information about the application to the user. However, the availability of richer information accessible through the tactile channel would minimize the visual demand of an application. For example, if the user can perceive which button she is touching on the screen through tactile feedback, she would not need to view the screen, and can instead focus her visual attention towards the primary task (e.g., walking). In this dissertation, I address high visual demand issues found in existing user interfaces on mobile touch-screen devices by using spatial tactile feedback. Spatial tactile feedback means tactile feedback patterns generated in different points of the user's body (the user's fingers and palm in this work). I developed tactile feedback hardware employing multiple vibration motors on the backside of a mobile touch-screen device. These multiple vibration motors can produce various spatial vibration patterns on the user's fingers and palm. I then validated the effects of spatial tactile feedback through three different applications: eyes-free interaction, a map application for visually impaired users, and collaboration support. Findings gained through the series of application-oriented investigations indicate that spatial tactile feedback is a beneficial output modality in mobile touch-screen devices, and can mitigate some visual demand issues.
10

Location Sensing Using Bluetooth for GPS Suppression

Mair, Nicholas 06 September 2012 (has links)
With the ubiquity of mobile devices, there has been increased interest in determining how they can be used with location-based services. These types of services work best when the device has the ability to sense its location frequently, while still maintaining enough battery life to carry out its normal daily functions. Since the life of the battery on a mobile device is already so limited, ways of preserving that energy has become an important issue. The goal of this thesis is to demonstrate that Bluetooth can assist in providing energy efficient mobile device localization. This goal is achieved through a proposed Bluetooth Location Service Discovery framework which provides an API that can be incorporated into third party applications. The API allows BlackBerry devices to use surrounding Bluetooth devices in order to make a prediction about its current location. Predictions are completed with the assistance of the K-Nearest Neighbour data mining algorithm, and can be used as an alternative to invoking the GPS. The results obtained through experiments demonstrate that the results are comparable to those obtained with GPS.

Page generated in 0.0835 seconds