• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Optical properties and Applications of Water Soluble Conjugated PPPs for Biosensors

Vetrichelvan, Muthalagu, Valiyaveettil, Suresh 01 1900 (has links)
In recent years, application of fluorescent conjugated polymers to sense chemical and biological analytes has received much attention owing to its technological significance. Water soluble conjugated polymers are interesting towards the developing sensors for biomolecules. In this present contribution, we describe the syntheses and characterization of a series of water soluble conjugated polymers with sulfonic acid groups in the side chain. Such anionic conjugated polymers are designed to interact with biomolecules such as cytochrome-C. All polymers are water soluble and showed strong blue emission. Significant quenching of the fluorescence from our functionalized PPP was observed upon addition of viologen derivatives or cytochrome -C. / Singapore-MIT Alliance (SMA)
2

Applications of Self-assembly for Molecular Electronics, Plasmon Coupling, and Ion Sensing

Chan, Yang-Hsiang 2010 May 1900 (has links)
This dissertation focused on the applications of self-assembled monolayers (SAMs) technique for the investigation of molecule based electronics, plasmon coupling between CdSe quantum dots and metal nanoparticles (MNPs), and copper ion detection using enhanced emission of CdSe quantum dots (QDs). The SAMs technique provides an approach to establish a robust, two-dimensional and densely packed structure which can be formed on metal or semiconductor surfaces. This allows for the design of molecular assemblies that can be used to understand the details of molecular conduction by employing various electrical testbeds. In this work, the strategy of molecular assemblies was used to pattern metal nanoparticles on GaAs surfaces, thereby furnishing a platform to explore the interactions between QDs and MNPs. The enhanced emission of CdSe QDs by MNPs was then used as a probe for ultrasensitive, cheap, and rapid copper(II) detection. The study is divided into three main facets. The first one aimed at controlling electron transport behavior through porphyrins on surfaces with an eye toward optoelectronic and light harvesting applications. The binding of the porphyrin molecules to Au surfaces, pre-covered with a dodecanethiol matrix, was characterized by FTIR, XPS, AFM, STM, of. This study has shown that the perfluoro coupling group between the porphyrin macrocycle and the thiol tether may provide a means of controlling the tunneling behavior. The second area of this study focused on the design of a simple platform to examine the coupling between metal nanostructures and quantum dot assemblies. Here we demonstrate that by using a patterned array of Au or Ag nanoparticles on GaAs, plasmon enhanced photoluminescence (PL) can be directly measured and quantified by direct scaling of regions with and without metal nanostructures. The third field presented a simple manner for using the enhanced PL of CdSe QDs as a probe for ultrasensitive Cu2+ ion detection and quantitative analysis. The PL of QDs was enhanced by two processes: first, photobrightening of the material, and second, plasmonic enhancement by coupling with Ag nanoprisms. This strong PL leads to a high sensitivity of the QDs over a wide dynamic range for Cu2+ detection, as Cu2+ efficiently quenches the QD emission.
3

Molecular Engineering of Conjugated Polymers for Sensor Applications

Vetrichelvan, Muthalagu, Valiyaveettil, Suresh 01 1900 (has links)
In recent years, the application of fluorescent conjugated polymers for sensing chemical and biological analytes has received much attention from many researchers. A promising development in this direction was the fabrication of conducting polymer-based sensors for the detection of metal ions, small organic molecules and biomolecules. Herein, we have designed, synthesized and studied a series of copolymers containing alternate phenylene and 2,5- or 2,6-substituted pyridine rings. The basic N-atom of the pyridine ring and the adjacent –OH group from the phenyl ring provide binding sites for metal ions. Another series of water-soluble conjugated polymers with propoxy sulfonate side chains are investigated for biosensor applications. Significant quenching of the polymer fluorescence upon addition of viologen derivatives was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers can be useful in the application of metal and biological sensors. / Singapore-MIT Alliance (SMA)
4

An Automated, On-Line Electrochemical Chlorite Ion Sensor

Myers, John Nicholas 18 August 2011 (has links)
No description available.
5

Materiais micro e nanoestruturados para sensores de íons do tipo EGFET / Micro and nanostructured materials for EGFET ion sensor.

Silva, Glaucio Ribeiro 06 July 2009 (has links)
Este trabalho descreve os resultados do estudo de materiais como óxido de manganês, nanotubos de carbono e feltro de carbono (puro e recoberto com nanotubos ou polianilina-Pani), assim como do desenvolvimento de dispositivos. Os dispositivos estudados estão relacionados a sensores de pH, utilizando esses materiais como membranas seletivas de H+ . Essas membranas funcionam como parte de dispositivos denominados EGFETs, cujo princípio de funcionamento é semelhante ao ISFET. Inicialmente utilizamos o óxido de manganês produzido através do método hidrotérmico com posterior fabricação de filmes finos desse material através da técnica de spray-pyrolysis. Esses filmes foram depositados variando a temperatura de deposição, a concentração da solução e o tipo de superfície do substrato de vidro, com o objetivo de investigar a resposta elétrica do EGFET em função da concentração de íons de H+ . As melhores sensibilidades foram de 50,1 mV/pH e 75 mV/pH no filmes produzidos no substrato de vidro rugoso e vidro liso, respectivamente, com 2g/l de concentração e temperatura de 80o C em ambos os filmes. Num segundo momento, trabalhamos com a produção de nanotubos de carbono e posterior fabricação de filmes finos também pela técnica de spray-pyrolysis, tendo como parâmetros, os mesmos utilizados na primeira parte. Os filmes finos que melhor responderam foram aqueles produzidos a 80o C no vidro rugoso e 100o C no vidro liso, com sensibilidades de 51,6 mV/pH e 53,1 mV/pH, respectivamente, ambos com 3g/l de concentração. Finalmente, utilizamos os feltros de carbono (FC) como membrana seletiva e também como substrato para os nanotubos de carbono (NTC) e a polianilina (Pani). Como membrana, os feltros tiveram uma sensibilidade de 65,47 mV/pH. NTC purificados e não purificados foram também depositados utilizando FC como substrato. NTC não purificados apresentaram pior resposta, enquanto que a parte que foi purificada teve um ligeiro aumento na sensibilidade, sendo de 67,7 mV/pH. Houve ainda o recobrimento dos FC e dos FC/NTC com a Pani. As membranas que contém Pani, são mais estáveis do que as outras amostras, sendo que a Pani no estado deprotonado tem melhor sensibilidade e estabilidade do a Pani no estado protonado. A melhor sensibilidade obtida com a participação da Pani foi de 46,4 mV/pH, que mesmo assim não supera a das demais amostras. Esses materiais se mostram como potenciais para uso de sensores de pH e posteriormente para uso como biossensores. / This work presents the results related to the study of materials such as manganese oxide, carbon nanotubes and carbon felt (pure and with deposition of nanotubes and polyaniline-Pani). The development of devices related to pH sensors is also presented. The materials are used as H+ selective membranes in sensors based on the EGFET configuration, almost similar to the ISFET. We produced manganese oxide by the hydrothermal method with subsequent deposition of thin films using spray pyrolysis. We varied the deposition temperature, concentration of solution and glass substrates surface with the aim of studying the electrical response of the EGFET as a function of the concentration of H+ ions. The best sensitivities were 50.1 mV/pH and 75 mV/pH for films grown on rough and flat substrates, respectively, with a concentration of 2g/l and substrate temperature of 80o C for both films. In the sequence, carbon nanotubes were investigated with the production of thin films also using the spray pyrolysis technique with the same deposition parameters. Films produced at 80o C on rough substrates and at 100o C on flat substrates presented sensitivities of 51.6 mV/pH and 53.1 mV/pH, respectively. Both were produced with a concentration of 3g/l. Finally, carbon felts (FC) were used as selective membranes and also as substrates for the deposition of NTC and Pani. As single membrane FC presented a sensitivity of 65.47 mV/pH. Purified and non-purified NTC were deposited on FC. Non-purified NTC presented the worst response, while purified NTC presented an increase in sensitivity to about 67.7 mV/pH. Pani was then deposited over FC and FC/NTC. Membranes that contain Pani were more stable than other samples. Pani was used either protonated or deprotonated. Deprotonated samples presented a better response. The best response with Pani was about 46.4 mV/pH, which is not as good as the one corresponding to other samples. These materials are promising candidates for a future use as H+ sensors, and also as biosensors.
6

Biossensor de ureia utilizando dispositivo pH-EGFET / Urea biosensor based on pH-EGFET technology.

Silva, Guilherme de Oliveira 29 July 2013 (has links)
Sensores são dispositivos capazes de captar um determinado sinal físico -químico do meio e converte-lo num sinal elétrico mensurável por meio de um transdutor. Biossensor é um sensor que tem como parte funcional um receptor biológico específico a determinado analito alvo. Os sinais físico-químicos experimentados por estes dispositivos são convertidos em sinais elétricos de magnitude proporcional à concentração de um ou mais compostos químicos. Neste trabalho, foi construído um sensor de pH utilizando filmes finos comerciais de óxido de estanho dopado com flúor (FTO) como receptor a íons. O sensor foi feito ligando-se amostras de FTO ao terminal de porta de um transistor de efeito de campo do tipo MOS (Metal Oxide Semiconductor). Quando colocado em solução, os íons presentes interagem com a amostra sendo adsorvidos na superfície do filme de FTO. O potencial gerado pelos íons adsorvidos modulam a tensão na porta do transistor e, desta maneira, pode -se determinar a concentração dos íons presentes na solução de acordo com a magnitude da resposta do transistor. A este tipo de dispositivo dá -se o nome de EGFET (Extended Gate Field Effect Transistor). O EGFET construído apresentou responsividade de 55 mV/pH e resposta linear em soluções de pH 2 ao 12. Através de técnicas de imobilização enzimática foi possível ligar covalentemente proteínas urease sobre a superfície dos filmes de FTO, convertendo o sensor de pH em biossensor de ureia. Soluções tampão com diferentes pHs e concentrações foram testadas e determinou -se que as condições ideais para o uso deste biossensor de ureia são soluções tampão com pH = 6 e concentração de 10mM. Nessas condições, o biossensor apresentou uma responsividade de 114,5 mV/p(ureia) e linearidade no intervalo de concentrações de ureia entre 3,2.10 -4 e 3,2.10 -2 mol/L. / Sensors are devices capable of capturing a certain physical-chemical signal from environment and convert it into a measurable electrical signal by a transducer. Biosensor is a sensor which has a biological sensing element as receptor specific to a particular target analyte. The physical-chemical signals experienced by these devices are converted into electrical signals with magnitude proportional to the concentration of one or more chemical compounds. In this work, we built a pH-sensor using commercial thin films of tin oxide doped with fluorine (FTO) as ions receptor. The sensor was made by linking FTO samples to the gate of a field effect transistor MOS type. In solution, the ions interact with the sample being adsorbed on the surface of FTO film. The potential generated by the ions adsorbed on film\'s surface modulate the gate voltage of the transistor and, in this way, we can determine the concentration of ions present in solution correlated with the magnitude of the transistor response. This kind of device is given the name of EGFET (Extended Gate Field Effect Transistor). The EGFET built exhibits sensitivity of 55 mV/pH and linear response in the range of pH 2 to 12. Through enzyme immobilization techniques we could covalently bind urease proteins on the surface of FTO film, changing the pH-sensor in urea biosensor. Buffer solutions with differents pHs and concentrations were tested and was determined that optimal environment conditions for this urea biosensor is buffer solutions with pH = 6 and 10mM of concentration. Under these conditions, the biosensor showed sensitivity of 114.5 mV/p(urea) and linear response in the range of 3,2.10 -4 to 3,2.10 -2 mol/L
7

Molecular Engineering of Amphiphilic Pyridine Incorporated Conjugated Polymers for Metal Ion Sensors

Vetrichelvan, Muthalagu, Valiyaveettil, Suresh 01 1900 (has links)
Recent developments in the synthesis and structure-property investigation studies of conjugated polymers have led to the design of novel polymeric materials with tailored properties for advanced technological applications. A promising development in this direction involves the fabrication of conducting polymer based sensors for the detection of metal ions and small organic molecules. Herein, we designed, synthesized and studied a series of amphiphilic copolymers containing alternate phenylene and 2,5- or 2,6- or 3,5-substituted pyridine rings. The basic N-atom of the pyridine ring and the adjacent –OH group from the phenyl ring provide binding sites for metal ions. Thermal properties, and optical properties of polymers in presence of acid, base and metal ions are investigated. A few target polymers showed high sensitivities for metal ions in solution. / Singapore-MIT Alliance (SMA)
8

Study of Disposable EGFET-based Hydrogen and Potassium Micro Ion Sensors

Chang, Chih-Han 08 April 2010 (has links)
In recent years, as biological information analysis technology rapidly develops in hematology, biochemistry and microbiology areas, demand for portable measurement systems become more and more important. This study makes efforts in developing disposable hydrogen and potassium ion sensor and microsystem for analysis application. The measured ion concentration data by this analysis microsystem provide people a judgement on their health condition, and furthermore an important reference for medical treatment for patients. There are several advantages in using IC or MEMS technology to manufacture portable measurement system, the advantages are down-scaling, short reaction time, trace chemical analysis, low power dissipation, and low cost. So the thesis uses extended gate field effect transistor, in order to measure multiple ions at the same time, multiple transistors are manufactured on the same chip with an ion selective membrane on top of the gate sensitive layer. This allows the measurement result of the multiple ion be shown at the same time. The main processing steps of the ion sensor developed in this study involve at least four photolithographic and three thin-film deposition processes. Based on the measurement result, the hydrogen ion sensor¡¦s sensitivity is 30.7 mV/decade for a sensing range pH1 ~ pH13. The sensitivity of the potassium ion sensor is 11.5 mV/decade for a sensing range 10-1M to 10-3M.
9

Biossensor de ureia utilizando dispositivo pH-EGFET / Urea biosensor based on pH-EGFET technology.

Guilherme de Oliveira Silva 29 July 2013 (has links)
Sensores são dispositivos capazes de captar um determinado sinal físico -químico do meio e converte-lo num sinal elétrico mensurável por meio de um transdutor. Biossensor é um sensor que tem como parte funcional um receptor biológico específico a determinado analito alvo. Os sinais físico-químicos experimentados por estes dispositivos são convertidos em sinais elétricos de magnitude proporcional à concentração de um ou mais compostos químicos. Neste trabalho, foi construído um sensor de pH utilizando filmes finos comerciais de óxido de estanho dopado com flúor (FTO) como receptor a íons. O sensor foi feito ligando-se amostras de FTO ao terminal de porta de um transistor de efeito de campo do tipo MOS (Metal Oxide Semiconductor). Quando colocado em solução, os íons presentes interagem com a amostra sendo adsorvidos na superfície do filme de FTO. O potencial gerado pelos íons adsorvidos modulam a tensão na porta do transistor e, desta maneira, pode -se determinar a concentração dos íons presentes na solução de acordo com a magnitude da resposta do transistor. A este tipo de dispositivo dá -se o nome de EGFET (Extended Gate Field Effect Transistor). O EGFET construído apresentou responsividade de 55 mV/pH e resposta linear em soluções de pH 2 ao 12. Através de técnicas de imobilização enzimática foi possível ligar covalentemente proteínas urease sobre a superfície dos filmes de FTO, convertendo o sensor de pH em biossensor de ureia. Soluções tampão com diferentes pHs e concentrações foram testadas e determinou -se que as condições ideais para o uso deste biossensor de ureia são soluções tampão com pH = 6 e concentração de 10mM. Nessas condições, o biossensor apresentou uma responsividade de 114,5 mV/p(ureia) e linearidade no intervalo de concentrações de ureia entre 3,2.10 -4 e 3,2.10 -2 mol/L. / Sensors are devices capable of capturing a certain physical-chemical signal from environment and convert it into a measurable electrical signal by a transducer. Biosensor is a sensor which has a biological sensing element as receptor specific to a particular target analyte. The physical-chemical signals experienced by these devices are converted into electrical signals with magnitude proportional to the concentration of one or more chemical compounds. In this work, we built a pH-sensor using commercial thin films of tin oxide doped with fluorine (FTO) as ions receptor. The sensor was made by linking FTO samples to the gate of a field effect transistor MOS type. In solution, the ions interact with the sample being adsorbed on the surface of FTO film. The potential generated by the ions adsorbed on film\'s surface modulate the gate voltage of the transistor and, in this way, we can determine the concentration of ions present in solution correlated with the magnitude of the transistor response. This kind of device is given the name of EGFET (Extended Gate Field Effect Transistor). The EGFET built exhibits sensitivity of 55 mV/pH and linear response in the range of pH 2 to 12. Through enzyme immobilization techniques we could covalently bind urease proteins on the surface of FTO film, changing the pH-sensor in urea biosensor. Buffer solutions with differents pHs and concentrations were tested and was determined that optimal environment conditions for this urea biosensor is buffer solutions with pH = 6 and 10mM of concentration. Under these conditions, the biosensor showed sensitivity of 114.5 mV/p(urea) and linear response in the range of 3,2.10 -4 to 3,2.10 -2 mol/L
10

Materiais micro e nanoestruturados para sensores de íons do tipo EGFET / Micro and nanostructured materials for EGFET ion sensor.

Glaucio Ribeiro Silva 06 July 2009 (has links)
Este trabalho descreve os resultados do estudo de materiais como óxido de manganês, nanotubos de carbono e feltro de carbono (puro e recoberto com nanotubos ou polianilina-Pani), assim como do desenvolvimento de dispositivos. Os dispositivos estudados estão relacionados a sensores de pH, utilizando esses materiais como membranas seletivas de H+ . Essas membranas funcionam como parte de dispositivos denominados EGFETs, cujo princípio de funcionamento é semelhante ao ISFET. Inicialmente utilizamos o óxido de manganês produzido através do método hidrotérmico com posterior fabricação de filmes finos desse material através da técnica de spray-pyrolysis. Esses filmes foram depositados variando a temperatura de deposição, a concentração da solução e o tipo de superfície do substrato de vidro, com o objetivo de investigar a resposta elétrica do EGFET em função da concentração de íons de H+ . As melhores sensibilidades foram de 50,1 mV/pH e 75 mV/pH no filmes produzidos no substrato de vidro rugoso e vidro liso, respectivamente, com 2g/l de concentração e temperatura de 80o C em ambos os filmes. Num segundo momento, trabalhamos com a produção de nanotubos de carbono e posterior fabricação de filmes finos também pela técnica de spray-pyrolysis, tendo como parâmetros, os mesmos utilizados na primeira parte. Os filmes finos que melhor responderam foram aqueles produzidos a 80o C no vidro rugoso e 100o C no vidro liso, com sensibilidades de 51,6 mV/pH e 53,1 mV/pH, respectivamente, ambos com 3g/l de concentração. Finalmente, utilizamos os feltros de carbono (FC) como membrana seletiva e também como substrato para os nanotubos de carbono (NTC) e a polianilina (Pani). Como membrana, os feltros tiveram uma sensibilidade de 65,47 mV/pH. NTC purificados e não purificados foram também depositados utilizando FC como substrato. NTC não purificados apresentaram pior resposta, enquanto que a parte que foi purificada teve um ligeiro aumento na sensibilidade, sendo de 67,7 mV/pH. Houve ainda o recobrimento dos FC e dos FC/NTC com a Pani. As membranas que contém Pani, são mais estáveis do que as outras amostras, sendo que a Pani no estado deprotonado tem melhor sensibilidade e estabilidade do a Pani no estado protonado. A melhor sensibilidade obtida com a participação da Pani foi de 46,4 mV/pH, que mesmo assim não supera a das demais amostras. Esses materiais se mostram como potenciais para uso de sensores de pH e posteriormente para uso como biossensores. / This work presents the results related to the study of materials such as manganese oxide, carbon nanotubes and carbon felt (pure and with deposition of nanotubes and polyaniline-Pani). The development of devices related to pH sensors is also presented. The materials are used as H+ selective membranes in sensors based on the EGFET configuration, almost similar to the ISFET. We produced manganese oxide by the hydrothermal method with subsequent deposition of thin films using spray pyrolysis. We varied the deposition temperature, concentration of solution and glass substrates surface with the aim of studying the electrical response of the EGFET as a function of the concentration of H+ ions. The best sensitivities were 50.1 mV/pH and 75 mV/pH for films grown on rough and flat substrates, respectively, with a concentration of 2g/l and substrate temperature of 80o C for both films. In the sequence, carbon nanotubes were investigated with the production of thin films also using the spray pyrolysis technique with the same deposition parameters. Films produced at 80o C on rough substrates and at 100o C on flat substrates presented sensitivities of 51.6 mV/pH and 53.1 mV/pH, respectively. Both were produced with a concentration of 3g/l. Finally, carbon felts (FC) were used as selective membranes and also as substrates for the deposition of NTC and Pani. As single membrane FC presented a sensitivity of 65.47 mV/pH. Purified and non-purified NTC were deposited on FC. Non-purified NTC presented the worst response, while purified NTC presented an increase in sensitivity to about 67.7 mV/pH. Pani was then deposited over FC and FC/NTC. Membranes that contain Pani were more stable than other samples. Pani was used either protonated or deprotonated. Deprotonated samples presented a better response. The best response with Pani was about 46.4 mV/pH, which is not as good as the one corresponding to other samples. These materials are promising candidates for a future use as H+ sensors, and also as biosensors.

Page generated in 0.6642 seconds