1 |
Mutual neutralisation reactions in atmospheric and industrial plasmasPoline, Mathias January 2022 (has links)
This thesis deals with experimental studies of electron transfer reactions between oppositely charged ions (mutual neutralisation). These were performed at the unique double electrostatic ion storage ring DESIREE at Stockholm University, which was put into full operation in 2017. In the first two published articles of this thesis, two atmospheric collision systems are treated, namely O+/O− and N+/O−. The aim was to reproduce previous published results from a single-pass (non-stored) merged ion beams setup in UCLouvain (Belgium) and thus provide a measure of DESIREE’s capacity and resolution. In addition, the effects of metastable ions were investigated with the support of theoretical calculations. The third published paper of this thesis deals with collisions between I+ and I− (iodine ions), a process relevant to electric thrusters for new spacecraft. The results are compared with theoretical calculations in order to provide an understanding of how the reaction takes place. Preliminary results on electron transfer reactions between diatomic molecules and atoms are presented.
|
2 |
A High-Rate Two-Dimensional Polyarylimide Covalent Organic Framework Anode for Aqueous Zn-Ion Energy Storage DevicesYu, Minghao, Naisa, Chandrasekhar, Raghupathy, Ramya Kormath Madam, Ly, Khoa Hoang, Zhang, Haozhe, Dmitrieva, Evgenia, Liang, Chaolun, Lu, Xihong, Kühne, Thomas D., Mirhosseini, Hossein, Weidinger, Inez M., Feng, Xinliang 05 July 2022 (has links)
Rechargeable aqueous Zn-ion energy storage devices are promising candidates for next-generation energy storage technologies. However, the lack of highly reversible Zn2+-storage anode materials with low potential windows remains a primary concern. Here, we report a two-dimensional polyarylimide covalent organic framework (PI-COF) anode with high-kinetics Zn2+-storage capability. The well-organized pore channels of PI-COF allow the high accessibility of the build-in redox-active carbonyl groups and efficient ion diffusion with a low energy barrier. The constructed PI-COF anode exhibits a specific capacity (332 C g–1 or 92 mAh g–1 at 0.7 A g–1), a high rate capability (79.8% at 7 A g–1), and a long cycle life (85% over 4000 cycles). In situ Raman investigation and first-principle calculations clarify the two-step Zn2+-storage mechanism, in which imide carbonyl groups reversibly form negatively charged enolates. Dendrite-free full Zn-ion devices are fabricated by coupling PI-COF anodes with MnO2 cathodes, delivering excellent energy densities (23.9 ∼ 66.5 Wh kg–1) and supercapacitor-level power densities (133 ∼ 4782 W kg–1). This study demonstrates the feasibility of covalent organic framework as Zn2+-storage anodes and shows a promising prospect for constructing reliable aqueous energy storage devices.
|
3 |
Precision mass measurements : Final limit of SMILETRAP I and the developments of SMILETRAP IISolders, Andreas January 2011 (has links)
The subject of this thesis is high-precision mass-measurements performed with Penning trap mass spectrometers (PTMS). In particular it describes the SMILETRAP I PTMS and the final results obtained with it, the masses of 40Ca and that of the proton. The mass of 40Ca is an indispensible input in the evaluation of measurements of the bound electron g-factor, used to test quantum electrodynamical calculations in strong fields. The value obtained agrees with available literature values but has a ten times higher precision. The measurement of the proton mass, considered a fundamental physical constant, was performed with the aim of validating other Penning trap results and to test the limit of SMILETRAP I. It was also anticipated that a measurement at a relative precision close to 10-10 would give insight in how to treat certain systematic uncertainties. The result is a value of the proton mass in agreement with earlier measurements and with an unprecedented precision of 1.8×10-10. Vital for the achieved precision of the proton mass measurement was the use of the Ramsey excitation technique. This technique, how it was implemented at SMILETRAP I and the benefits from it is discussed in the thesis and in one of the included papers. The second part of the thesis describes the improved SMILETRAP II setup at the S-EBIT laboratory, AlbaNova. All major changes and upgrades compared to SMILETRAP I are discussed. This includes, apart from the Ramsey excitation technique, higher ionic charge states, improved temperature stabilization, longer run times, different reference ions, stronger and more stable magnetic field and a more efficient ion detection. Altogether these changes should reduce the uncertainty in future mass determinations by an order of magnitude, possibly down to 10-11. / At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 9: Accepted.
|
4 |
Redox-Active Metaphosphate-Like Terminals Enable High-Capacity MXene Anodes for Ultrafast Na-Ion StorageSun, Boya, Lu, Qiongqiong, Chen, Kaixuan, Zheng, Wenhao, Liao, Zhongquan, Lopatik, Nikolaj, Li, Dongqi, Hantusch, Martin, Zhou, Shengqiang, Wang, Hai I., Sofer, Zdeněk, Brunner, Eike, Zschech, Ehrenfried, Bonn, Mischa, Dronskowski, Richard, Mikhailova, Daria, Liu, Qinglei, Zhang, Di, Yu, Minghao, Feng, Xinliang 08 April 2024 (has links)
2D transition metal carbides and/or nitrides, so-called MXenes, are noted as ideal fast-charging cation-intercalation electrode materials, which nevertheless suffer from limited specific capacities. Herein, it is reported that constructing redox-active phosphorus−oxygen terminals can be an attractive strategy for Nb4C3 MXenes to remarkably boost their specific capacities for ultrafast Na+ storage. As revealed, redox-active terminals with a stoichiometric formula of PO2- display a metaphosphate-like configuration with each P atom sustaining three P-O bonds and one P=O dangling bond. Compared with conventional O-terminals, metaphosphate-like terminals empower Nb4C3 (denoted PO2-Nb4C3) with considerably enriched carrier density (fourfold), improved conductivity (12.3-fold at 300 K), additional redox-active sites, boosted Nb redox depth, nondeclined Na+-diffusion capability, and buffered internal stress during Na+ intercalation/de-intercalation. Consequently, compared with O-terminated Nb4C3, PO2-Nb4C3 exhibits a doubled Na+-storage capacity (221.0 mAh g-1), well-retained fast-charging capability (4.9 min at 80% capacity retention), significantly promoted cycle life (nondegraded capacity over 2000 cycles), and justified feasibility for assembling energy−power-balanced Na-ion capacitors. This study unveils that the molecular-level design of MXene terminals provides opportunities for developing simultaneously high-capacity and fast-charging electrodes, alleviating the energy−power tradeoff typical for energy-storage devices.
|
Page generated in 0.0741 seconds