• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 18
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 42
  • 32
  • 27
  • 21
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

ION MOTION AND AN OPTIMIZATION OF TANDEM MASS SPECTROMETRY

Spencer, John Edward 01 January 2005 (has links)
Quadrupole ion trap(QIT) mass spectrometry has become one of the most widelyused tools in the analysis of the structure of small molecules. The motion of the ionsstored in the quadrupole ion trap is extremely important. This ion motion within thequadrupole ion trap is controlled by several factors including the m/z ratio and thecollisional cross section of the ion. Investigation of ion motion within the QIT has thepotential to elucidate a new way to separate ions based on these factors. DC tomographyexperiments allow for the trajectory of the ion motion to be measured withoutmodifications to the ion trap. The ability to use DC tomography for separation ofisomeric ions on a commercial GC/MS system was investigated.Investigation of the mass range within the ion trap is necessary for the analysis ofa wide range of molecules. The ability of the quadrupole ion trap to perform MS/MSanalyses can provide insight into the structural information of many compounds.However, there exists a low mass cut-off (LMC) within the quadrupole ion trap and thusinformation about the low m/z fragments from a parent ion is lost. Schwartz and coworkerspresented a new technique labeled pulsed q dissociation (PQD) at the 53rdAnnual ASMS Conference in San Antonio TX in 2005. PQD eliminates the LMC byperforming CID at a qz of 0.4 but, then immediately lowering the q level before the massscan in a linear ion trap. By operating the quadrupole ion trap in this same manner, lowm/z product ions can be detected. This technique and elucidation of the energetic processcontained within PQD were explored further using a modified commercial quadrupoleion trap and the results discussed in this work.
42

Optimization of a RF Single Ion Paul Trap for a 88Sr+ Ion Optical Clock Comparison

Tibbo, Maria S. 24 October 2013 (has links)
As part of the ongoing world-wide effort in improving time and frequency references, a high accuracy optical frequency standard was developed using the electric quadrupole allowed clock transition at 445 THz (674 nm) in a trapped and laser cooled 88Sr+ion. An ion trap system of the endcap design has been recently evaluated with a fractional frequency uncertainty which surpasses the accuracy of the current realization of the SI second. This thesis seeks to further evaluate the limiting systematic shifts of the device by optimizing a second ion trap reference based on a rf Paul trap design, which was then compared with the endcap trap reference frequency. The comparison of the two ion traps' reference frequencies confirmed an overall offset of -0.36 pm 0.08 Hz at the 445 THz reference frequency corresponding to a fractional frequency offset of 8 x 10^-16.
43

Ion trap studies of single microparticles: optical resonances and mass spectrometry

Trevitt, Adam John Unknown Date (has links) (PDF)
Microparticle experiments conducted using a newly commissioned quadrupole ion trap (QIT) are reported. Single polystyrene microparticles are confined using three dimensional electrodynamic quadrupole fields and characterised by their fluorescence emission and secular frequency measurements. The advantages of this confinement technique are that single particle properties can be measured free from ensemble averaging effects and unperturbed by solvents and (or) substrates. (For complete abstract open document)
44

Laboratorní astrochemie a aplikace počítačových modelů / Laboratory astrochemistry and applications of computer simulations

Roučka, Štěpán January 2012 (has links)
This work is focused on laboratory studies of ion chemistry at conditions relevant for astrophysics. The three main outcomes of the thesis are: (1) The experimental study of the reaction rate coefficient of the associative detachment reaction H- + H -> H2 + e-; measurement of the thermal rate coefficient at the temperatures in the range 10-135 K is described. (2) The design of a novel apparatus for detecting the electrons produced in the RF trap and measuring their energy; numerical simulations and preliminary experimental results are presented. (3) The development of a model of the electron cooling in the afterglow plasma and the application of the model in the analysis of the H3+ recombination measurements.
45

Optimization of a RF Single Ion Paul Trap for a 88Sr+ Ion Optical Clock Comparison

Tibbo, Maria S. January 2013 (has links)
As part of the ongoing world-wide effort in improving time and frequency references, a high accuracy optical frequency standard was developed using the electric quadrupole allowed clock transition at 445 THz (674 nm) in a trapped and laser cooled 88Sr+ion. An ion trap system of the endcap design has been recently evaluated with a fractional frequency uncertainty which surpasses the accuracy of the current realization of the SI second. This thesis seeks to further evaluate the limiting systematic shifts of the device by optimizing a second ion trap reference based on a rf Paul trap design, which was then compared with the endcap trap reference frequency. The comparison of the two ion traps' reference frequencies confirmed an overall offset of -0.36 pm 0.08 Hz at the 445 THz reference frequency corresponding to a fractional frequency offset of 8 x 10^-16.
46

Single-Ion Spectroscopy of Two Electric Quadrupole Transitions in Ytterbium Ion and Excess Micromotion Minimization / Ybイオンの2つの電気四重極子遷移の単一イオン分光および過剰マイクロ運動の最小化

Imai, Yasutaka 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22659号 / 工博第4743号 / 新制||工||1741(附属図書館) / 京都大学大学院工学研究科電子工学専攻 / (主査)教授 山田 啓文, 教授 川上 養一, 准教授 杉山 和彦 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
47

Strukturní studium karboranů s využitím hmotnostní spektrometrie / Structural stury of carboranes by mass spectrometry

Navrátilová, Romana January 2009 (has links)
Boron cluster compounds are substances clearly synthetic, which don't exist outdoors. This group covers boranes, heteroboranes and their derivatives. They are synthesized and examined mostly for their extraordinary structural and bonding properties. Their study also brought many remarkable findings and even allowed practical use of these compounds in science and technology. This thesis is focused on the application of mass spectrometry for the identification of boranes and heteroboranes and on the study of their fragmentation mechanisms using tandem mass spectrometry on spherical ion trap.
48

Laser cooling, state initialization and laser manipulation of a trapped ion

Andersson, Julius January 2021 (has links)
One way of realizing a quantum computer is to use an ion trap. The research group Trapped Ion Quantum Technologies at Stockholm university were operating an ion trap with strontium ions. To increase the coherence time they installed a magnetic field shielding. Therefore the experimental setup had to be partially rebuilt. A new 405 nm laser was installed in order to speed up the ionization step of neutral strontium atoms. The characterization of the laser was performed and it showed that the laser could be operated at the required wavelength. The wavelength was characterized with respect to temperature and power. A scan of the 422 nm Doppler cooling laser was also performed and it showed that the Doppler cooling worked as intended. Lastly, Rabi oscillations were performed to see if coherent manipulation of the ion's quantum state worked as intended. This experiment was also successful but it showed some differences between having the magnetic shielding door open or closed which should be investigated further.
49

Enhanced Detection Strategies Accomplished Through Metal Binding and Miniature Mass Spectrometry

Graichen, Adam 01 February 2013 (has links)
A multiplexed method for performing MS/MS on multiple ions simultaneously in a miniature rectilinear ion trap (RIT) mass spectrometer has been developed. This method uses an ion encoding procedure that relies on the mass bias that exists when ions are externally injected into an RIT operated with only a single phase RF applied to one pair of electrodes. The ion injection profile under such conditions ions is Gaussian-like over a wide range of RF amplitudes, or low mass cutoff (LMCO) values, during ion accumulation. We show that this distribution is related to ion m/z and is likely caused by ions having an optimal range of pseudo-potential well depths for efficient trapping. Based on this observation, precursor ion intensity changes between two different injection LMCO values can be predicted, and these ion intensity changes are found to be carried through to their corresponding product ions, enabling multiplexed MS/MS spectra to be deconvoluted. The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWA. Results show that the metal complex ions can react with low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below the median lethal doses for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations. Mass spectrometry has become a tool for studying noncovalently bound complexes. Specifically, electrospray ionization mass spectrometry (ESI-MS) has found increasing use for the determination of affinity (Ka) or dissociation (Kd) constants. Direct measurement of the equilibrium components by ESI-MS is the most straightforward approach for determining binding equilibrium constants, but this approach is prone to error and has some inherent limitations. Transferring complexes from solution to the gas phase may perturb the equilibrium concentrations and/or different ionization efficiencies may cause the resulting ion signals not to reflect actual solution concentrations. Furthermore, ESI only works under a limited range of solvent conditions (i.e. low ionic strengths), which limits the broad applicability of this approach. We propose an approach based on covalent labeling in the context of metal-catalyzed oxidation (MCO) reactions that, when combined with MS, overcomes such limitations when determining metal-ligand binding constants. The MCO-MS approach will provide concurrent information regarding metal binding site and metal-protein binding affinity. Optimization of the MCO reaction through isotopic mass tags will permit enhanced identification of modified residues. Application of this method to study the affinity and binding interactions of other divalent metals with β2m are likely to provide insight into the specificity of copper for causing β2m amyloid formation.
50

Characterization of micromotion induced by RF phase shift with photon correlation detection in a Paul trap / Karaktärisering av mikrorörelse från en RF-fasförskjutning med fotonkorrelationsdetektion i en Paul-fälla

Edqvist, Ebba January 2022 (has links)
Trapped ions in a Paul trap can experience micromotion on top of the wanted secular motion.Micromotion can for example cause Doppler shifts in spectroscopy measurements, making it important to know the amplitude of the motion. In this master thesis we use the correlation between RF driving the trap and photons emitted by a single Beryllium ion during the fluorescence detection to determine the micromotion. This method also allows us to investigate the effect on micromotion from a phase mismatch between RF electrodes. The photon correlation method is compared to measuring the micromotion by taking the ratio between the micromotion sideband and the carrier transition, and also to a simulation of the residual RF fields in the trap by a finite element method. Finally, we vary the path length of RF lines, to tune the phase on individual RF electrodes. The result is that the phase mismatch effect is more than an order of magnitude less than expected from theory. / Fångade joner i en Paul-fälla upplever mikrorörelse utöver den önskade sekulära rörelsen. Mikrorörelse kan till exempel orsaka Dopplerförskjutning i spektroskopimätningar, vilket gör det viktigt att veta amplituden av rörelsen. I det här examensarbetet använder vi korrelationen mellan RF som driver jonfällan och fotoner utsända från en enskild berylliumjon under fluorescens-detektion, för att mäta mikrorörelsen. Den här metoden tillåter oss också att undersöka effekten på mikrorörelse från en fasförskjutning mellan RF-elektroder. Fotonkorrelationsmetoden jämförs med en mätning av mikrorörelse genom att ta förhållandet mellan mikrorörelse-sidobandet och bärar-övergången, och också med en simulering av RF-fälten i jonfällan med en finit element-metod. Slutligen varierar vi längden på RF-kopplingen, för att justera fasen mellan individuella RF-elektroder. Resultatet är att effekten från fasförskjutningen är mer än en storleksordning mindre än vad teorin förutsagt.

Page generated in 0.0799 seconds