• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

LOW-LOSS, HIGH PERFORMANCE HYBRID PHOTONICS DEVICES ENABLED BY ION-EXCHANGED GLASS WAVEGUIDES

Araci, Ismail E. January 2010 (has links)
Robust ion-exchanged glass waveguides exhibit low optical losses in a broad spectral range and they allow integration of several devices on the same chip due to their planar structure. Consequently, they can be a low cost alternative to semiconductors for fabricating various integrated optical devices. Two high performance photonic devices were designed and realized, demonstrating the potential of glass waveguides. The well-controlled silver-film ion-exchange process allowed the fabrication of: i) a highly sensitive biosensor based on optical absorption and, ii) a low loss hybrid electro-optic (EO) polymer modulator with a narrow coplanar electrode gap. The single-mode, channel integrated optical ion-exchange waveguide on borosilicate glass (Corning 0211) is described for broad spectral band (400-650 nm) detection and analysis of heme-containing protein films at a glass/water interface. The evanescent wave interaction is improved significantly by fabricating ion-exchange waveguides with a step-like index profile. Silver nano-particle formation is reduced in order to achieve low loss in the Soret-band (~400 nm). Unlike other surface-specific techniques (e.g. SPR, interferometry) that probe local refractive-index changes and therefore are susceptible to temperature fluctuations, the integrated optical waveguide absorption technique probes molecular-specific transition bands and is expected to be less vulnerable to environmental perturbations. The hybrid integration of phosphate glass (IOG-1) and EO polymer is realized for the first time. The critical alignment steps which are typically required for hybrid optoelectronic devices are eliminated with a simple alignment-free fabrication technique. The low loss adiabatic transition from glass to EO polymer waveguide is enabled by gray scale patterning of the novel EO polymer, AJLY. Total insertion loss of 5 dB and electrode gap of 8 μm is obtained for an optimized device design. EO polymer poling at 135 ºC and 75 V/μm is enabled by the sol-gel buffer layer.

Page generated in 0.0544 seconds