1 |
Mode-matching method in optical corrugated waveguides with large rectangular groove depthTsa, Woo-Hu January 1995 (has links)
No description available.
|
2 |
Design and characterization of optical phased array with half-wavelength spacingZiyun Kong (11812673) 20 December 2021 (has links)
<div>Integrated optical phased arrays (OPAs) have gained popularity for achieving beam steering with no moving parts and potential high speed and small beam divergence angle. These characteristics are crucial for applications like free-space communication and light detection and ranging (LiDAR), a key component in autonomous driving. Two main aspects that affect the performance of an integrated OPA are discussed: high power handling and large beam steering range.</div><div><br></div><div>High emission power from the OPA is desirable for long range detection applications. Silicon is broadly used in integrated OPA designs as it allows for structures with a more compact footprint. However, its power-handling capability is limited by the two-photon absorption of the material, resulting in higher loss and potential damage at high input power levels. In this work, high power delivery into free space is realized by using a silicon nitride (SiN) and silicon hybrid platform. SiN components are used to direct and split high input power into smaller portions and coupled into silicon components for a more compact emitter array.</div><div><br></div><div>In order to achieve a full 180-degree beam steering range with aliasing-free operation, the pitch of a periodic emitter array is required to be half of the operating wavelength or less. At such a small pitch, evanescent coupling between adjacent emitters causes strong crosstalk. We demonstrate the optical phased array based on uniform half-wavelength spaced grating emitter array. Two-dimensional beam confinement and a record-high aliasing-free beam steering field-of-view of 135 degrees from grating emitter are measured from a 32 channel SiN/Si hybrid OPA. Evanescent coupling between waveguides are suppressed by metamaterial-based <b>e</b>xtreme <b>ski</b>n-<b>d</b>epth (e-skid) waveguides. The e-skid waveguides utilize an alternating air-silicon multi-fin side cladding. The high index contrast of those sub-wavelength ridges provides strong anisotropy, which leads to faster decay of the evanescent wave for transverse electric (TE) input modes, thus limiting evanescent coupling between closely spaced waveguides.</div><div><br></div><div>Furthermore, we extend the concept of the half-wavelength-pitched emitter array to the design of a two-dimensional end-fire OPA. This OPA can potentially achieve 180-degree by 180-degree full-range beam steering with no grating lobes by having a half-wavelength emitter pitch in both dimensions. The design of a broadband 8 by 8 silicon photonics switch based on the half-wavelength-pitched emitter array with low path-dependent loss (PDL) is also discussed.</div>
|
3 |
LOW-LOSS, HIGH PERFORMANCE HYBRID PHOTONICS DEVICES ENABLED BY ION-EXCHANGED GLASS WAVEGUIDESAraci, Ismail E. January 2010 (has links)
Robust ion-exchanged glass waveguides exhibit low optical losses in a broad spectral range and they allow integration of several devices on the same chip due to their planar structure. Consequently, they can be a low cost alternative to semiconductors for fabricating various integrated optical devices. Two high performance photonic devices were designed and realized, demonstrating the potential of glass waveguides. The well-controlled silver-film ion-exchange process allowed the fabrication of: i) a highly sensitive biosensor based on optical absorption and, ii) a low loss hybrid electro-optic (EO) polymer modulator with a narrow coplanar electrode gap. The single-mode, channel integrated optical ion-exchange waveguide on borosilicate glass (Corning 0211) is described for broad spectral band (400-650 nm) detection and analysis of heme-containing protein films at a glass/water interface. The evanescent wave interaction is improved significantly by fabricating ion-exchange waveguides with a step-like index profile. Silver nano-particle formation is reduced in order to achieve low loss in the Soret-band (~400 nm). Unlike other surface-specific techniques (e.g. SPR, interferometry) that probe local refractive-index changes and therefore are susceptible to temperature fluctuations, the integrated optical waveguide absorption technique probes molecular-specific transition bands and is expected to be less vulnerable to environmental perturbations. The hybrid integration of phosphate glass (IOG-1) and EO polymer is realized for the first time. The critical alignment steps which are typically required for hybrid optoelectronic devices are eliminated with a simple alignment-free fabrication technique. The low loss adiabatic transition from glass to EO polymer waveguide is enabled by gray scale patterning of the novel EO polymer, AJLY. Total insertion loss of 5 dB and electrode gap of 8 μm is obtained for an optimized device design. EO polymer poling at 135 ºC and 75 V/μm is enabled by the sol-gel buffer layer.
|
4 |
A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap StructuresGarcía Castelló, Javier 07 February 2014 (has links)
The necessity of using extremely high sensitivity biosensors in certain research areas has remarkably increased during the last two decades. Optical structures, where light is used to transduce biochemical interactions into optical signals, are a very interesting approach for the development of this type of biosensors. Within optical sensors, photonic integrated architectures are probably the most promising platform to develop novel lab-on-a-chip devices. Such planar structures exhibit an extremely high sensitivity, a significantly reduced footprint and a high multiplexing potential for sensing applications. Furthermore, their compatibility with CMOS processes and materials, such as silicon, opens the route to mass production, thus reducing drastically the cost of the final devices. Optical sensors achieve their specificity and label-free operation by means of a proper chemical functionalization of their surfaces. The selective attachment of the receptors allows the detection of the target analytes within a complex matrix.
This PhD Thesis is focused on the development of label-free photonic integrated sensors in which the detection is based on the interaction of the target analytes with the evanescent field that travels along the structures. Herein, we studied several photonic structures for sensing purposes, such as photonic crystals and ring resonators. Photonic crystals, where their periodicity provokes the appearance of multiple back and forth reflections, exhibits the so-called slow-light phenomenon that allows an increase of the interaction between the light and the target matter. On the other hand, the circulating nature of the resonant modes in a ring resonator offers a multiple interaction with the matter near the structure, providing a longer effective length.
We have also proposed a novel approach for the interrogation of photonic bandgap sensing structures where simply the output power needs to measured, contrary to current approaches based on the spectral interrogation of the photonic structures. This novel technique consists on measuring the overlap between a broadband source and the band edge from a SOI-based corrugated waveguide, so that we can determine indirectly its spectral position in real-time. Since there is no need to employ tunable equipment, we obtain a lighter, simpler and a cost-effective platform, as well as a real-time observation of the molecular interactions. The experimental demonstration with antibody detection measurements has shown the potential of this technique for sensing purposes / García Castelló, J. (2014). A Novel Approach to Label-Free Biosensors Based on Photonic Bandgap Structures [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/35398
|
5 |
Extensão do método das diferenças finitas para o projeto e modelagem de dispositivos ópticos utilizando meios com propriedades diversas / Finite difference method extension for the design and modeling of optical devices using materials with diverse propertiesAlcantara, Licinius Dimitri Sá de 25 March 2004 (has links)
Este trabalho tem por objetivo a extensão de métodos numéricos baseados em diferenças finitas no domínio do tempo (FDTD) e no domínio da freqüência (FD-BPM) para a simulação da propagação de ondas eletromagnéticas em materiais com propriedades ópticas diversas, por exemplo, isotrópicos, anisotrópicos, lineares, não-lineares, bem como a combinação destes em uma mesma estrutura. Inicialmente foram elaborados formalismos bidimensionais (FDTD e FD-BPM), dos quais foram investigados modos com polarização TM (Magnético Transversal) que se propagam em estruturas planares magnetoópticas/não-lineares/lineares. Esta polarização foi escolhida tendo em vista o campo magnetostático dc adotado, o qual possibilitou a observação do fenômeno não-recíproco associado ao não-linear simultaneamente. Por outro lado, é bem sabido que o método FDTD é computacionalmente muito intensivo. Portanto, um grande esforço foi dedicado aos formalismos no domínio da freqüência, os quais foram implementados em duas e três dimensões. Este último foi estendido para um formalismo totalmente vetorial, capaz de simular modos híbridos ou até mesmo a transferência de energia entre modos de polarizações ortogonais. Isto nos permitiu investigar geometrias ainda mais complexas, tais como um isolador óptico baseado em um guia de onda tip rib utilizando material magnetooptico. Adicionalmente, fenômenos de natureza complexa, tais como a dinâmica dos condensados de luz em materiais com não-lineares do tipo Kerr com saturação, também conhecidos como meios não-lineares cúbico-qüínticos, foram investigados pela primeira vez com um formalismo vetorial. Finalmente, métodos numéricos capazes de considerar qualquer combinação de materiais com propriedades ópticas distintas (linear e/ou não-linear e/ou magnetoóptico) são uma ferramenta extraordinária para a comunidade científica para o projeto de novos dispositivos ópticos, bem como a investigação de novos efeitos físicos com vistas à aplicações em computação óptica, que podem resultar em um menor e mais eficiente número de componentes para sistemas de comunicações ópticos. / This work introduces three improved formalisms for the analysis of electromagnetic wave propagation through materials with distinct optical properties, i.e., isotropic, anisotropic, linear, nonlinear, or any combination of them. Two finite difference approaches were extensively investigated in this work for this purpose, namely the finite difference in time domain (FDTD), and the finite difference beam propagation method (2D and 3D FD-BPM), these in frequency domain. Initially, a TM (transverse magnetic) mode propagating through a planar magnetooptic/nonlinear/linear waveguide was investigated by way of a two-dimensional formalism (FDTD and FD-BPM). This mode polarization was chosen based on the orientation of the external magnetostatic field adopted, which favored the observation of non-reciprocal and nonlinear effects simultaneously. On the other hand, it is well known that FDTD formalisms are computationally intensives. Therefore, a great effort was dedicated to its frequency domain counterpart (FD-BPM), which was implemented in two and three dimensions. The later was further extended to a fully vectorial formalism, which is capable of simulating hybrid modes or even the energy transfer between orthogonal modes. This enabled us to investigate more complex geometries, such as an optical isolator based on magnetooptic rib waveguide. Additionally, complex phenomena, such as the dynamic of light condensates in bulk nonlinear Kerr media with saturation, also known as cubic-quintic nonlinear media, were investigated for the first time with a 3D vectorial formalism. Finally, numerical methods capable of handling any combination of materials with distinct optical properties (linear and/or nonlinear and/or magnetooptic) are an extraordinary tool for the scientific community for the design of new optical devices, as well as the investigation of new physical effects aimed for optical computing, that may result in fewer and more efficient components for optical communication systems.
|
6 |
Extensão do método das diferenças finitas para o projeto e modelagem de dispositivos ópticos utilizando meios com propriedades diversas / Finite difference method extension for the design and modeling of optical devices using materials with diverse propertiesLicinius Dimitri Sá de Alcantara 25 March 2004 (has links)
Este trabalho tem por objetivo a extensão de métodos numéricos baseados em diferenças finitas no domínio do tempo (FDTD) e no domínio da freqüência (FD-BPM) para a simulação da propagação de ondas eletromagnéticas em materiais com propriedades ópticas diversas, por exemplo, isotrópicos, anisotrópicos, lineares, não-lineares, bem como a combinação destes em uma mesma estrutura. Inicialmente foram elaborados formalismos bidimensionais (FDTD e FD-BPM), dos quais foram investigados modos com polarização TM (Magnético Transversal) que se propagam em estruturas planares magnetoópticas/não-lineares/lineares. Esta polarização foi escolhida tendo em vista o campo magnetostático dc adotado, o qual possibilitou a observação do fenômeno não-recíproco associado ao não-linear simultaneamente. Por outro lado, é bem sabido que o método FDTD é computacionalmente muito intensivo. Portanto, um grande esforço foi dedicado aos formalismos no domínio da freqüência, os quais foram implementados em duas e três dimensões. Este último foi estendido para um formalismo totalmente vetorial, capaz de simular modos híbridos ou até mesmo a transferência de energia entre modos de polarizações ortogonais. Isto nos permitiu investigar geometrias ainda mais complexas, tais como um isolador óptico baseado em um guia de onda tip rib utilizando material magnetooptico. Adicionalmente, fenômenos de natureza complexa, tais como a dinâmica dos condensados de luz em materiais com não-lineares do tipo Kerr com saturação, também conhecidos como meios não-lineares cúbico-qüínticos, foram investigados pela primeira vez com um formalismo vetorial. Finalmente, métodos numéricos capazes de considerar qualquer combinação de materiais com propriedades ópticas distintas (linear e/ou não-linear e/ou magnetoóptico) são uma ferramenta extraordinária para a comunidade científica para o projeto de novos dispositivos ópticos, bem como a investigação de novos efeitos físicos com vistas à aplicações em computação óptica, que podem resultar em um menor e mais eficiente número de componentes para sistemas de comunicações ópticos. / This work introduces three improved formalisms for the analysis of electromagnetic wave propagation through materials with distinct optical properties, i.e., isotropic, anisotropic, linear, nonlinear, or any combination of them. Two finite difference approaches were extensively investigated in this work for this purpose, namely the finite difference in time domain (FDTD), and the finite difference beam propagation method (2D and 3D FD-BPM), these in frequency domain. Initially, a TM (transverse magnetic) mode propagating through a planar magnetooptic/nonlinear/linear waveguide was investigated by way of a two-dimensional formalism (FDTD and FD-BPM). This mode polarization was chosen based on the orientation of the external magnetostatic field adopted, which favored the observation of non-reciprocal and nonlinear effects simultaneously. On the other hand, it is well known that FDTD formalisms are computationally intensives. Therefore, a great effort was dedicated to its frequency domain counterpart (FD-BPM), which was implemented in two and three dimensions. The later was further extended to a fully vectorial formalism, which is capable of simulating hybrid modes or even the energy transfer between orthogonal modes. This enabled us to investigate more complex geometries, such as an optical isolator based on magnetooptic rib waveguide. Additionally, complex phenomena, such as the dynamic of light condensates in bulk nonlinear Kerr media with saturation, also known as cubic-quintic nonlinear media, were investigated for the first time with a 3D vectorial formalism. Finally, numerical methods capable of handling any combination of materials with distinct optical properties (linear and/or nonlinear and/or magnetooptic) are an extraordinary tool for the scientific community for the design of new optical devices, as well as the investigation of new physical effects aimed for optical computing, that may result in fewer and more efficient components for optical communication systems.
|
Page generated in 0.1061 seconds