• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hepatocyte Water Volume and Potassium Activity During Hypotonic Stress

Wang, Kening, Wondergem, Robert 01 August 1993 (has links)
Hepatocytes exhibit a regulatory volume decrease (RVD) during hypotonic shock, which comprises loss of intracellular K+ and Cl- accompanied by hyperpolarization of transmembrane potential (Vm) due to an increase in membrane K+ conductance, (GK). To examine hepatocyte K+ homeostasis during RVD, double-barrel, K+-selective microelectrodes were used to measure changes in steady-state intracellular K+ activity (aKi) and Vm during hyposmotic stress. Cell water volume change was evaluated by measuring changes in intracellular tetramethylammonium (TMA+). Liver slices were superfused with modified Krebs physiological salt solution. Hyposmolality (0.8×300 mosm) was created by a 50 m m step-decrease of external sucrose concentration. Hepatocyte Vm hyperpolarized by 19 mV from -27 ± 1 to -46 ± 1 mV and aKidecreased by 14% from 91 ± 4 to 78 ± 4 m m when slices were exposed to hyposmotic stress for 4-5 min. Both Vm and aKireturned to control level after restoring isosmotic solution. In paired measurements, hypotonic stress induced similar changes in Vm and aKiboth control and added ouabain (1 m m) conditions, and these values returned to their control level after the osmotic stress. In another paired measurement, hypotonic shock first induced an 18-mV increase in Vm and a 15% decrease in aKiin control condition. After loading hepatocytes with TMA+, the same hypotonic shock induced a 14-mV increase in Vm and a 14% decrease in aTMAi. This accounted for a 17% increase of intracellular water volume, which was identical to the cell water volume change obtained when aKiwas used as the marker. Nonetheless, hyposmotic stress-induced changes in Vm and aKiwere blocked partly by Ba2+ (2 m m). We conclude that (i) hepatocyte Vm increases and aKidecreases during hypotonic shock; (ii) the changes in hepatocyte Vm and aKiduring and after hypotonic shock are independent of the Na+-K+ pump; (iii) the decrease in aKiduring hypotonic stress results principally from hepatocyte swelling.

Page generated in 0.1083 seconds