• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hepatocyte Water Volume and Potassium Activity During Hypotonic Stress

Wang, Kening, Wondergem, Robert 01 August 1993 (has links)
Hepatocytes exhibit a regulatory volume decrease (RVD) during hypotonic shock, which comprises loss of intracellular K+ and Cl- accompanied by hyperpolarization of transmembrane potential (Vm) due to an increase in membrane K+ conductance, (GK). To examine hepatocyte K+ homeostasis during RVD, double-barrel, K+-selective microelectrodes were used to measure changes in steady-state intracellular K+ activity (aKi) and Vm during hyposmotic stress. Cell water volume change was evaluated by measuring changes in intracellular tetramethylammonium (TMA+). Liver slices were superfused with modified Krebs physiological salt solution. Hyposmolality (0.8×300 mosm) was created by a 50 m m step-decrease of external sucrose concentration. Hepatocyte Vm hyperpolarized by 19 mV from -27 ± 1 to -46 ± 1 mV and aKidecreased by 14% from 91 ± 4 to 78 ± 4 m m when slices were exposed to hyposmotic stress for 4-5 min. Both Vm and aKireturned to control level after restoring isosmotic solution. In paired measurements, hypotonic stress induced similar changes in Vm and aKiboth control and added ouabain (1 m m) conditions, and these values returned to their control level after the osmotic stress. In another paired measurement, hypotonic shock first induced an 18-mV increase in Vm and a 15% decrease in aKiin control condition. After loading hepatocytes with TMA+, the same hypotonic shock induced a 14-mV increase in Vm and a 14% decrease in aTMAi. This accounted for a 17% increase of intracellular water volume, which was identical to the cell water volume change obtained when aKiwas used as the marker. Nonetheless, hyposmotic stress-induced changes in Vm and aKiwere blocked partly by Ba2+ (2 m m). We conclude that (i) hepatocyte Vm increases and aKidecreases during hypotonic shock; (ii) the changes in hepatocyte Vm and aKiduring and after hypotonic shock are independent of the Na+-K+ pump; (iii) the decrease in aKiduring hypotonic stress results principally from hepatocyte swelling.
2

Manipulation of potassium ion fluxes to induce apoptosis in lung cancer cells

Andersson, Britta January 2007 (has links)
Apoptosis is a special form of cell death that if non-functional may lead to diseases such as cancer. A reduction of the intracellular potassium ion (K+) content is necessary for activating enzymes important for the execution of apoptosis. Pharmacological modulation of K+ fluxes to reduce intracellular K+ in cancer cells might therefore force the cells into apoptosis and decrease tumour cell mass. Human malignant pleural mesothelioma (MPM) is a form of cancer often caused by asbestos exposure. Although asbestos has been banned in the Western World, the incidence of MPM is expected to increase. Cisplatin is the first-line chemotherapy for MPM, but acquired resistance to the drug is a clinical problem. This thesis is mainly based on work with the human malignant pleural mesothelioma cell line (P31 wt) and a cisplatin-resistant sub-line (P31 res). The aim was to first characterize K+ fluxes in P31 wt and P31 res cells, and then manipulate them in order to reduce intracellular K+ and induce apoptosis with K+ manipulation alone or in combination with cisplatin. Characterization of K+ fluxes in P31 wt cells showed that: 1) ouabain, a digitalis-like drug, and specific blocker of the Na+, K+, ATPase pump, effectively inhibited K+ uptake, 2) bumetanide, a diuretic, and an inhibitor of the Na+, K+, 2Cl-¬-cotransporter, had a transient effect on K+ uptake, and 3) the antifungal drug amphotericin B stimulated K+ efflux. In order to determine intracellular K+ content, the potassium-binding fluorescent probe PBFI-AM was used in a 96-well plate assay. After a 3-h incubation with ouabain, with or without bumetanide, combined with amphotericin B, the intracellular K+ content was reduced in P31 wt cells but not in P31 res cells. Ouabain induced apoptosis in both P31 wt and P31 res cells. P31 res cells were sensitized to cisplatin by ouabain, since 10 mg/L cisplatin in combination with ouabain induced about the same percentage of apoptotic cells as 40 mg/L cisplatin. Apoptosis was executed via caspase-3 activation in both P31 wt and P31 res cells. Amphotericin B enhanced ouabain-induced apoptosis in P31 wt cells via caspase-9 activation, with increased caspase-3 activation and DNA fragmentation as consequences. Ouabain-induced apoptosis in P31 res cells was executed via increased expression of pro-apoptotic Bak. The combination of cisplatin with ouabain and amphotericin B was stressful to both P31 wt and P31 res cells, since SAPK/JNK a known factor in stress-induced apoptosis was activated. In conclusion, K+ flux manipulation with clinical used drugs can induce apoptosis per se and also enhance cisplatin-induced apoptosis in P31 wt and P31 res cells.
3

Modulation Of Cardiac Inward-Rectifier K+ Current IK1 By Intracellular K+ And Extracellular K+

Dyachok, Oksana 13 December 2011 (has links)
The inwardly-rectifying K+ current (IK1) is important for heart cell function because it sets the resting potential, influences cell excitability, and promotes repolarization of the action potential. My objective was to investigate the modulation of IK1 by extracellular K+ (K+o) and intracellular K+ (K+i). IK1 was recorded from whole-cell-configured guinea-pig ventricular myocytes that were dialyzed with Na+-free EGTA-buffered pipette-filling solution and bathed with Na+ or NMDG+ solution that contained agents that inhibit non-IK1 currents. Lowering K+o from standard 5.4 to 2 and 1 mM shifted the reversal potential (Erev) of IK1 in accord with calculated K+ equilibrium potential (EK), and altered IK1 amplitude in accord with conductance (GK1)? ?K+o. Surprisingly, myocytes bathed with 0-mM K+ solution had a small outward IK1 at holding potential (Vhold) ?85 mV. This IK1 was attributed to channel-activation by T-tubular K+ (K+T) whose concentration is sensitive to the flow of T-tubular IK1. K+T in myocytes bathed with 0-mM K+ solution was ? 3.2 mM at Vhold ?85 mV, but ? 0.3 mM following large K+T-depleting flows of inward IK1 at ?160 mV. Results consistent with interplay of IK1 and K+T were also obtained in experiments on myocytes bathed with 2-, 5.4-, and 15-mM K+ solution. Myocytes were dialyzed with pipette solutions that contained 0-140 mM K+ to investigate modulation by K+i. When IK1 at Vhold was kept small, Erev varied with pipette K+ in a near-Nernstian manner (i.e., Erev ? EK); however, when IK1 (Vhold) was large and inward, Erev was markedly negative to nominal EK. Findings in experiments that involved shifting Vhold, changing K+o, and application of Ba2+ and Cs+ suggest that the magnitude/direction of IK1 strongly affects the concentration of K+ in submembrane cytoplasm. Classical GK1-voltage parameters GK1max and V0.5 (but not slope factor) were affected by decreases in K+i: GK1max declined by ? 25% per decade decrease in K+i, and V0.5 shifted approximately as 0.5 ? EK-shift. The latter findings are discussed and compared with those of earlier studies on the dependence of inwardly-rectifying K+ conductance on K+i.
4

Effects of Anisosmotic Medium on Cell Volume, Transmembrane Potential and Intracellular K<sup>+</sup> Activity in Mouse Hepatocytes

Howard, Larry D., Wondergem, Robert 01 December 1987 (has links)
Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (Vm) and intracellular K+ activity (aKi) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration. Vm increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimental Vm/control Vm)] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8-1.5. The aKi did not change when medium osmolality was decreased 40-70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60 mm K+ or 1 mm quinine HCl or at 27°C resulted in no change in Vm compared with a 20-mV increase in Vm without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume and aKi in response to anisosmotic medium; however, Vm behaves as an osmometer under these conditions. Also, increases in Vm by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.
5

Effects of Hyperosmotic Medium on Hepatocyte Volume, Transmembrane Potential and Intracellular K<sup>+</sup> Activity

Wang, Kening, Wondergem, Robert 04 November 1991 (has links)
Hepatocyte transmembrane potential (Vm) behaves as an osmometer and varies with changes in extracellular osmotic pressure created by altering the NaCl concentration in the external medium (Howard, L.D. and Wondergem, R. (1987) J. Membr. Biol. 100, 53). We now have demonstrated similar effects on Vm by increasing external osmolality with added sucrose and not altering ionic strength. We also have demonstrated that hyperosmotic stress-induced depolarization of Vm results from changes in membrane K+ conductance, gK, rather than from changes in the K+ equilibrium potential. Vm and aki of hepatocytes in liver slices were measured by conventional and ion-sensitive microelectrodes, respectively. Cell water vols. were estimated by differences in wet and dry weights of liver slices after 10-min incubations. Effect of hyperosmotic medium on membrane transference number for K+, tk, was measured by effects on Vm of step-changes in external [K+]. Hepatocyte Vm decreased 34, 52 and 54% when tissue was superfused with medium made hyperosmotic with added sucrose (50, 100 and 150 mM). Correspondingly, aKi increased 10, 18 and 29% with this hyperosmotic stress of added sucrose. Tissue water of 2.92 ± 0.10 kg H2O/kg dry weight in control solution decreased to 2.60 ± 0.05, 2.25 ± 0.06 and 2.22 ± 0.05 kg H2O/kg dry weight with additions to medium of 50, 100 and 150 mM sucrose, respectively. Adding 50 mM sucrose to medium decreased tK from 0.20 ± 0.01 to 0.05 ± 0.01. Depolarization by 50% with hyperosmotic stress (100 mM sucrose) also occurred in Cl-free medium where Cl- was substituted with gluconate. We conclude that hepatocytes shrink during hyperosmotic stress, and the aKi increases. The accompanying decrease in Vm is opposite to that expected by an increase in aKi, and at least in part results from a concomitant decrease in gK. Changes in membrane Cl- conductance most likely do not contribute to osmotic stress-induced depolarization, since equivalent decreases in Vm occurred with added sucrose in cells depleted of Cl- by superfusing tissue with Cl-free medium.

Page generated in 0.0817 seconds