1 |
Towards a functional role for human CIC-3 and human CIC-4, two members of the CIC chloride channel familyWeylandt, Karsten-Henrich January 2000 (has links)
No description available.
|
2 |
LONG-TERM REGULATION OF PROTEIN CONCENTRATION IN HELA AT VARIABLE OSMOTIC AND IONIC CONDITIONSHollembeak, Jordan E. 28 April 2022 (has links)
No description available.
|
3 |
Physical Nature of CytoplasmGuo, Ming 01 January 2015 (has links)
Forces are increasingly recognized as major regulators of cell physiology and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Furthermore, cells can sense their extracellular environment and regulate their own mechanics and biology. Due to limitation of methodology, the cortical property of cells has been extensively characterized; however, the mechanics and dynamics of cytoplasm which consists all key cellular organelles, remains poorly understood. Moreover, a basic understanding of cell mechanics, such as which parameters correlates with cell stiffness and therefore impact cell biology is unknown. In this thesis, we firstly present a thorough investigation of the mechanical and dynamic properties of the cytoplasm, including direct measurement of cytoplasmic material property using optical tweezers, and visualization of intracellular dynamics by tracer particles. By combining these two measurements we obtain a directly characterization of the cytoplasmic forces; we further apply this method to study cancer cells and cells without vimentin intermediate filament, and find that cancer cells have significantly stronger intracellular forces, which vimentin intermediate filament does not have effect on the force generation. Secondly, we present our result on the role of cell volume in cell mechanics and cell biology. We show that the volume of a cell changes upon the property of the extracellular environment; the change in cell volume directly induces change in the mechanical property of both cytoplasm and cell cortex. We further show that the change in cell volume is due to intracellular water influx/efflux, and this has significant impact on cell biology, such as stem cell differentiation. Finally, we present a direct characterization of the equation of state of living cells by measuring cell volume under increasing osmotic pressure. We show that a living cell, under osmotic compression, behaves as Van der Waals gas with a hard sphere excluded volume; the minimum volume of cells is determined by cellular proteins, which the equation of state of living cells is dominated by intracellular ions. / Engineering and Applied Sciences
|
4 |
Leucine-Rich Repeat Containing Protein LRRC8A Is Essential for Swelling-Activated Cl<sup>−</sup> Currents and Embryonic Development in ZebrafishYamada, Toshiki, Wondergem, Robert, Morrison, Rebecca, Yin, Viravuth P., Strange, Kevin 01 October 2016 (has links)
Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society. A volume-regulated anion channel (VRAC) has been electrophysiologically characterized in innumerable mammalian cell types. VRAC is activated by cell swelling and mediates the volume regulatory efflux of Cl− and small organic solutes from cells. Two groups recently identified the mammalian leucine-rich repeat containing protein LRRC8A as an essential VRAC component. LRRC8A must be coexpressed with at least one of the other four members of this gene family, LRRC8B-E, to reconstitute VRAC activity in LRRC8−/− cells. LRRC8 genes likely arose with the origin of chordates. We identified LRRC8A and LRRC8C-E orthologs in the zebrafish genome and demonstrate that zebrafish embryo cells and differentiated adult cell types express a swelling-activated Cl− current indistinguishable from mammalian VRAC currents. Embryo cell VRAC currents are virtually eliminated by morpholino knockdown of the zebrafish LRRC8A ortholog lrrc8aa. VRAC activity is fully reconstituted in LRRC8−/− human cells by coexpression of zebrafish lrrc8aa and human LRRC8C cDNAs. lrrc8aa expression varies during zebrafish embryogenesis and lrrc8aa knockdown causes pericardial edema and defects in trunk elongation and somatogenesis. Our studies provide confirmation of the importance of LRRC8A in VRAC activity and establish the zebrafish as a model system for characterizing the molecular regulation and physiological roles of VRAC and LRRC8 proteins.
|
5 |
Ethanol Increases Hepatocyte Water VolumeWondergem, Robert, Davis, Janet 01 January 1994 (has links)
Mouse hepatocytes respond to osmotic stress with adaptive changes in transmembrane potential, Vm, such that hypotonic stress hyperpolarizes cells and hypertonic stress depolarizes them. These changes in Vm provide electromotive force for redistribution of ions such as CI−, and this comprises part of the mechanism of hepatocyte volume regulation. We conducted the present study to determine whether ethanol administered in vitro to mouse liver slices increases hepatocyte water volume, and whether this swelling triggers adaptive changes in the Vm. Cells in mouse liver slices were loaded with tetramethylammonium ion (TMA). Changes in hepatocyte water volume were computed from measurements with Ion sensitive micro‐electrodes of changes in intracellular activity of TMA (a1TMA) that resulted from water fluxes. Ethanol (70 mM) increased hepatocyte water volume Immediately, and this peaked at 17% by 7 to 8 min, by which time a plateau was reached. Liver slices also were obtained from mice treated 12 hr prior with 4‐methylpyrazole (4 mM). The effect of ethanol on their hepatocyte water volume was identical to that from untreated mice, except that the onset and peak were delayed 2 min. Hepatocyte Vm showed no differences between control or ethanol‐treated cells during the course of volume changes. In contrast, hyposmotic stress, created by dropping external osmolality 50 mosm, increased Vm from –30 mV to –46 mV. Ethanol did not inhibit this osmotic stress‐induced hyperpolarization, except partially at high concentrations of 257 mM or greater. We infer that ethanol‐induced swelling of hepatocytes differs from that resulting from hyposmotic stress. Cellular events associated with increased activity of intracellular water most likely trigger the hyperpolarization of Vm that accompanies the latter. We conclude, therefore, that ethanol‐induced swelling occurs without change in cell water activity. This may result from the retention of macromolecules by ethanol in cells that constitutively secrete protein.
|
6 |
An Electrophysiological Technique to Measure Change in Hepatocyte Water VolumeKhalbuss, Walid E., Wondergem, Robert 02 November 1990 (has links)
We have applied an electrophysiologic technique (Reuss L.(1985) Proc. Natl. Acad. Sci. USA 82, 6014) to measure changes in steady-state hepatocyte volume during osmotic stress. Hepatocytes in mouse liver slices were loaded with tetramethylammonium ion (TMA+) during transient exposure of cell to nystatin. Intracellular TMA+ activity (αiTMA) was measured with TMA+ -sensitive, double-barrelled microelectrodes. Loading hepatocytes with TMA+ did not change their membrane potential (Vm), and under steady-state conditions αiTMA remained constant over 4 min in a single impalement. Hyperosmotic solutions (50, 100 and 150 mM sucrose added to media) and hyposmotic solutions (sucrose in media reduced by 50 and 100 mM) increased and decreased αiTMA, respectively, which demonstrated transmembrane water movements. The slope of the plot of change in steady-state cell water volume, [(αiTMA)O/(αiTMA)4min] - 1, on the relative osmolality of media, (experimental mosmol/control mosmol) -1, was less than predicted for a perfect osmometer. Corresponding measurements of Vm showed that its magnitude increased with hyposmolality and decreased with hyperosmolality. When Ba2+ (2 mM) was present during hyposmotic stress of 0.66 × 286 mosmol (control), cell water volume increased by a factor of 1.44 ± 0.02 compared with that of hyposmotic stress alone, which increased cell water volume by a factor of only 1.12 ± 0.02, P< 0.001. Ba2+ also decreased the hyperpolarization of hyposmotic stress from a factor of 1.62 ± 0.04 to 1.24 ± 0.09, P < 0.01. We conclude that hepatocytes partially regulate their steady-state volume during hypo- and hyperosmotic stress. However, volume regulation during hyposmotic stress diminished along with hyperpolarization of Vm in the presence of the K+ -channel blocker, Ba2+. This shows that variation in Vm during osmotic stress provides an intercurrent, electromotive force for hepatocyte volume regulation.
|
7 |
Glutamate Receptor-Mediated Taurine Release From The Hippocampus During Oxidative StressTucker, Brian Christopher January 2012 (has links)
No description available.
|
8 |
A Microfluidic Volume Sensor for Single-Cell Growth MeasurementsJing, Wenyang January 2016 (has links)
The multidisciplinary field of microfluidics has shown great promise for research at the interface of biology, chemistry, engineering, and physics. Laminar flow, versatile fabrication, and small length scales have made microfluidics especially well-suited for single-cell characterization. In particular, the evaluation of single-cell growth rates is of fundamental interest for studying the cell cycle and the effects of environmental factors, such as drugs, on cellular growth. This work presents aspects in the development of a microfluidic cell impedance sensor for measuring the volumetric growth rate of single cells and covers its application in the investigation of a new discovery relating to multidrug resistance in S. cerevisiae. While there are many avenues for the utilization and interpretation of growth rates, this application focused on the quantitative assessment of biological fitness—an important parameter in population genetics and mathematical biology. Through a combination of growth measurements and optics, this work concludes a novel case of bet-hedging in yeast, as well as the first ever case of bet-hedging in eukaryotic multidrug resistance.
|
9 |
Cell size homeostasis in animal cells / Etude de l'homéostasie de taille chez les cellules animalesCadart, Clotilde 03 May 2017 (has links)
Le mécanisme d’homéostasie de taille chez les cellules animales est très peu compris actuellement. Cette question est pourtant d’un intérêt majeur car le maintien de l’homéostasie de taille dans une population de cellules prolifératives doit se faire par une coordination entre la croissance et la division. Chez la levure S. pombe, il a ainsi été montré que la taille est une information cruciale pour déclencher l’entrée en mitose (Fantes, 1977). Chez plusieurs bactéries et les cellules filles de la levure S. cerevisiae au contraire, de récentes études ont au contraire montré que l’homéostasie de taille était le résultat d’une addition constante de volume, indépendamment de la taille initiale des cellules (Campos et al., 2014; Soifer et al., 2016; Taheri-Araghi et al., 2015). Ce mécanisme est appelé « adder » et génère une régression des tailles à la moyenne, génération après génération. Ces résultats ont été possibles grâce au développement de techniques permettant la mesure dynamique du volume à l’échelle de la cellule unique et sur plusieurs générations. Une telle mesure est cependant très difficile chez les cellules de mammifère dont le volume fluctue constamment et qui cyclent sur des temps plus longs (environ 20 heures). Pour cette raison, la plupart des approches proposées sont indirectes (Kafri et al., 2013; Sung et al., 2013; Tzur et al., 2009) ou reposent sur une mesure de la masse plutôt que du volume (Mir et al. 2014; Son et al., 2012). Ensemble, ces études ont montré que les cellules de mammifère croissaient de manière exponentielle. Elles ont aussi remis en cause le modèle traditionnel qui proposait que l’homéostasie de taille reposait sur l’adaptation de la durée du cycle et mis en avant un rôle de la régulation de la vitesse de croissance. Cependant, aucun modèle n’a réellement été proposé ou démontré. La nature et l’existence même d’un mécanisme maintenant l’homéostasie de taille des cellules de mammifère est en fait discutée (Lloyd, 2013).Pour caractériser l’homéostasie de taille des cellules de mammifères, nous avons développé une technique permettant pour la première fois la mesure du volume de ces cellules sur des cycles complets (Cadart et al., 2017; Zlotek-Zlotkiewicz et al. 2015). Nous montrons que plusieurs types cellulaires (HT29, MDCK et HeLa) se comportent d’une manière similaire à celle d’un « adder ». Pour tester davantage cette observation, nous induisons artificiellement des divisions asymétriques en confinant les cellules dans des micro-canaux. Nous observons que les asymétries de tailles sont réduites mais pas complètement corrigées au cours du cycle suivant, à la manière d’un « adder ». Pour comprendre comment la croissance et la progression dans le cycle sont coordonnées et génère cet « adder », nous combinons notre méthode de mesure de volume avec un suivi de la progression dans les différentes phases du cycle. Nous montrons que la durée de la phase G1 est inversement corrélée au volume initial des cellules. Cependant, cette corrélation semble contrainte par une durée minimale de G1 mise en évidence lors de l’étude de cellules artificiellement poussées à atteindre de grandes tailles. Néanmoins, même dans cette condition où la modulation de la durée du cycle est perdue, l’observation du « adder » est maintenue. Ceci suggère un rôle complémentaire de la régulation de la vitesse de croissance des cellules. Nous proposons donc une méthode pour estimer théoriquement la contribution relative de l’adaptation de la vitesse de croissance et de la durée du cycle dans le contrôle de la taille. Nous utilisons cette méthode pour proposer un cadre général où comparer le processus homéostatique des bactéries et de nos cellules. En conclusion, notre travail apporte pour la première fois la démonstration que les cellules de mammifères maintiennent l’homéostasie grâce à un mécanisme similaire au « adder ». Ce mécanisme semble impliquer à la fois une modulation de la durée du cycle et du taux de croissance. / The way proliferating mammalian cells maintain a constant size through generations is still unknown. This question is however central because size homeostasis is thought to occur through the coordination of growth and cell cycle progression. In the yeast S. pombe for example, the trigger for cell division is the reach of a target size (Fantes, 1977). This mechanism is referred to as ‘sizer’. The homeostatic behavior of bacteria and daughter cells of the yeast S. cerevisiae on the contrary was recently characterized as an ‘adder’ where all cells grow by the same absolute amount of volume at each cell cycle. This leads to a passive regression towards the mean generation after generation (Campos et al., 2014; Soifer et al., 2016; Taheri-Araghi et al., 2015). These findings were made possible by the development of new technologies enabling direct and dynamic measurement of volume over full cell cycle trajectories. Such measurement is extremely challenging in mammalian cells whose shape constantly fluctuate over time and cycle over 20 hours long periods. Studies therefore privileged indirect approaches (Kafri et al., 2013; Sung et al., 2013; Tzur et al., 2009) or indirect measurement of cell mass rather than cell volume (Mir et al. 2014; Son et al., 2012). These studies showed that cells overall grew exponentially and challenged the classical view that cell cycle duration was adapted to size and instead proposed a role for growth rate regulation. To date however, no clear model was reached. In fact, the nature and even the existence of the size homeostasis behavior of mammalian cells is still debated (Lloyd, 2013).In order to characterize the homeostatic process of mammalian cells, we developed a technique that enable measuring, for the first time, single cell volume over full cell cycle trajectories (Cadart et al., 2017; Zlotek-Zlotkiewicz et al. 2015). We found that several cell types, HT29, HeLa and MDCK cells behaved in an adder-like manner. To further test the existence of homeostasis, we artificially induced asymmetrical divisions through confinement in micro-channels. We observed that asymmetries of sizes were reduced within the following cell cycle through an ‘adder’-like behavior. To then understand how growth and cell cycle progression were coordinated in way that generates the ‘adder’, we combined our volume measurement method with cell cycle tracking. We showed that G1 phase duration is negatively correlated with initial size. This adaptation is however limited by a minimum duration of G1, unraveled by the study of artificially-induced very large cells. Nevertheless, the adder behavior is maintained even in the absence of time modulation, thus suggesting a complementary growth regulatory mechanism. Finally, we propose a method to estimate theoretically the relative contribution of growth and timing modulation in the overall size control and use this framework to compare our results with that of bacteria. Overall, our work provides the first evidence that proliferating mammalian cells behave in an adder-like manner and suggests that both growth and cell cycle duration are involved in size control.
|
10 |
Redistribution of Hepatocyte Chloride During L-Alanine UptakeWang, Kening, Wondergem, Robert 01 September 1993 (has links)
We used ion-sensitive, double-barrel microelectrodes to measure changes in hepatocyte transmembrane potential (Vm), intracellular K+, Cl-, and Na+ activities (aik, aCliand aNai), and water volume during l-alanine uptake. Mouse liver slices were superfused with control and experimental Krebs physiological salt solutions. The experimental solution contained 20 μml-alanine, and the control solution was adjusted to the same osmolality (305 mOsm) with added sucrose. Hepatocytes also were loaded with 50 m m tetramethylammonium ion (TMA+) for 10 min. Changes in cell water volume during l-alanine uptake were determined by changes in intracellular, steady-state TMA+ activity measured with the K+ electrode. Hepatocyte control Vm was -33±1 mV. l-alanine uptake first depolarized Vm by 2±0.2 mV and then hyperpolarized Vm by 5 mV to-38±1 mV (n = 16) over 6 to 13 min. During this hyperpolarization, aNaiincreased by 30% from 19±2 to 25±3 m m (P < 0.01), and aKidid not change significantly from 83±3 m m. However, with added ouabain (1 m m) l-alanine caused only a 2-mV increase in Vm, but now aKidecreased from 61±3 to 54±5 m m (P < 0.05). Hyperpolarization of Vm by l-alanine uptake also resulted in a 38% decrease of aClifrom 20±2 to 12±3 m m (P < 0.001). Changes in Vm and VCl - Vm voltage traces were parallel during the time of l-alanine hyperpolarization, which is consistent with passive distribution of intracellular Cl- with the Vm in hepatocytes. Added Ba2+ abolished the l-alanineinduced hyperpolarization, and aCliremained unchanged. Hepatocyte water volume during l-alanine uptake increased by 12±3%. This swelling did not account for any changes in ion activities following l-alanine uptake. We conclude that hepatocyte aKiis regulated by increased Na+-K+ pump activity during l-alanine uptake in spite of cell swelling and increased Vm due to increased K+ conductance. The hyperpolarization of Vm during l-alanine uptake provides electromotive force to decrease aCli. The latter may contribute to hepatocyte volume regulation during organic solute transport.
|
Page generated in 0.0638 seconds