• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phase separation in carbon:transition metal nanocomposite thin films

Berndt, Markus 21 December 2009 (has links)
The structural evolution of carbon:transition metal (C:TM) nanocomposite thin films is investigated in two regimes: (i) surface diffusion governed regime occurring during the film growth and (ii) bulk diffusion dominated regime occurring during the post-deposition thermal annealing. C:V, C:Co, and C:Cu nanocomposite films were grown by ion beam co-sputtering. The influence of the metal type, metal content (15-40 at.%), substrate temperature (RT-500°C), and annealing temperature (300-700°C) on the structure and morphology of the composite is studied by the means of elastic recoil detection analysis, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Vanadium (copper) is in carbidic (metallic) state in the whole temperature range of the study. In contrast, cobalt is in carbidic state up to 300°C and becomes metallic at higher growth temperatures. The nanoparticles in C:V films exhibit a globular shape at RT-500°C, whereas in C:Co and C:Cu films a growth transition from globular to elongated nanoparticles occurs around 300°C. The comparison of the Raman spectroscopy results from carbon reference and C:TM thin films shows that the presence of the metal during growth significantly enhances the formation of sixfold ring carbon clusters at temperatures as low as RT. The enhancement occurs independently of the nanoparticle size, shape, and phase, and metal content, and is related to processes taking place on the nanoparticle surface of the growing film rather than in the bulk. The degree of enhancement depends on the TM type and content. Post-deposition annealing of C:Co and C:Cu films at 700°C causes the metal segregation at the film surface, while no changes upon annealing occur in C:V films. In addition, cobalt brings about the carbon graphitization by a dissolution-diffusion-precipitation mechanism, similar to the metal-mediated crystallization of amorphous silicon or germanium. No graphitization upon annealing occurs in C:V, C:Cu, and carbon reference films. / Die Strukturentwicklung in Kohlenstoff-Übergangsmetall-Nanokompositschichten wird in zwei Bereichen untersucht: (i) im oberflächendiffusionsgesteuerten Bereich während des Schichtwachstums und (ii) im bulkdiffusionsdominierten Bereich während des nachträglichen Temperns. C:V, C:Co und C:Cu Nanokompositschichten wurden durch Ionenstrahl Co-Sputtern hergestellt. Der Einfluss des Metalltyps, des Metallgehalts (15-40 at.%), der Substrattemperatur (RT-500°C) und der Temperatur beim Tempern (300-700°C) auf die Struktur und Morphologie des Komposits wird mittels elastischer Rückstoßteilchen-Analyse, Röntgenbeugung, Transmissionselektronenmikroskopie und Ramanspektroskopie untersucht. Vanadium (Kupfer) ist im gesamten Temperaturbereich der Studie in karbidischem (metallischen) Zustand. Im Gegensatz dazu befindet sich Kobalt bis zu einer Temperatur von 300°C in karbidischem Zustand und wird bei höheren Abscheidetemperaturen metallisch. Die Nanopartikel in C:V Filmen besitzen eine runde Form im Temperaturbereich von RT bis 500°C wohingegen bei den C:Co und C:Cu Filmen ein Übergang von runden zu länglichen Partikeln bei etwa 300°C zu beobachten ist. Der Vergleich der Ramanspektroskopieresultate der Kohlenstoffreferenzproben und der Nanokompositschichten zeigt, dass die Anwesenheit des Metalls während des Schichtwachstums die Bildung von sechsatomigen Kohlenstoffringclustern bei Temperaturen so niedrig wie Raumtemperatur deutlich fördert. Die Erhöhung tritt unabhängig von der Partikelgröße, -form und phase und unabhängig vom Metallgehalt auf, und betrifft eher Prozesse, die auf der Oberfläche der Nanopartikel während des Schichtwachstums stattfinden als im Bulk. Der Grad der Erhöhung hängt vom Metalltyp und -gehalt ab. Nachträgliches Tempern der C:Co und C:Cu Filme bei 700°C führt zur Segregation des Metalls an der Schichtoberfläche während in den C:V Filmen keine Veränderungen durch das Tempern auftreten. Des weiteren kommt es in den C:Co Filmen zur Graphitisierung des Kohlenstoffs durch einen „Lösungs-Diffusions-Ablagerungs“ Mechanismus ähnlich der metallvermittelten Kristallisierung in amorphem Silizium und Germanium. In den C:V, C:Cu und Kohlenstoffreferenzfilmen findet keine Graphitisierung während des Temperns statt.
2

Phase separation in carbon:transition metal nanocomposite thin films / Phasentrennung in dünnen Kohlenstoff-Übergangsmetall-Nanokompositen

Berndt, Markus 08 February 2010 (has links) (PDF)
The structural evolution of carbon:transition metal (C:TM) nanocomposite thin films is investigated in two regimes: (i) surface diffusion governed regime occurring during the film growth and (ii) bulk diffusion dominated regime occurring during the post-deposition thermal annealing. C:V, C:Co, and C:Cu nanocomposite films were grown by ion beam co-sputtering. The influence of the metal type, metal content (15-40 at.%), substrate temperature (RT-500°C), and annealing temperature (300-700°C) on the structure and morphology of the composite is studied by the means of elastic recoil detection analysis, X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. Vanadium (copper) is in carbidic (metallic) state in the whole temperature range of the study. In contrast, cobalt is in carbidic state up to 300°C and becomes metallic at higher growth temperatures. The nanoparticles in C:V films exhibit a globular shape at RT-500°C, whereas in C:Co and C:Cu films a growth transition from globular to elongated nanoparticles occurs around 300°C. The comparison of the Raman spectroscopy results from carbon reference and C:TM thin films shows that the presence of the metal during growth significantly enhances the formation of sixfold ring carbon clusters at temperatures as low as RT. The enhancement occurs independently of the nanoparticle size, shape, and phase, and metal content, and is related to processes taking place on the nanoparticle surface of the growing film rather than in the bulk. The degree of enhancement depends on the TM type and content. Post-deposition annealing of C:Co and C:Cu films at 700°C causes the metal segregation at the film surface, while no changes upon annealing occur in C:V films. In addition, cobalt brings about the carbon graphitization by a dissolution-diffusion-precipitation mechanism, similar to the metal-mediated crystallization of amorphous silicon or germanium. No graphitization upon annealing occurs in C:V, C:Cu, and carbon reference films. / Die Strukturentwicklung in Kohlenstoff-Übergangsmetall-Nanokompositschichten wird in zwei Bereichen untersucht: (i) im oberflächendiffusionsgesteuerten Bereich während des Schichtwachstums und (ii) im bulkdiffusionsdominierten Bereich während des nachträglichen Temperns. C:V, C:Co und C:Cu Nanokompositschichten wurden durch Ionenstrahl Co-Sputtern hergestellt. Der Einfluss des Metalltyps, des Metallgehalts (15-40 at.%), der Substrattemperatur (RT-500°C) und der Temperatur beim Tempern (300-700°C) auf die Struktur und Morphologie des Komposits wird mittels elastischer Rückstoßteilchen-Analyse, Röntgenbeugung, Transmissionselektronenmikroskopie und Ramanspektroskopie untersucht. Vanadium (Kupfer) ist im gesamten Temperaturbereich der Studie in karbidischem (metallischen) Zustand. Im Gegensatz dazu befindet sich Kobalt bis zu einer Temperatur von 300°C in karbidischem Zustand und wird bei höheren Abscheidetemperaturen metallisch. Die Nanopartikel in C:V Filmen besitzen eine runde Form im Temperaturbereich von RT bis 500°C wohingegen bei den C:Co und C:Cu Filmen ein Übergang von runden zu länglichen Partikeln bei etwa 300°C zu beobachten ist. Der Vergleich der Ramanspektroskopieresultate der Kohlenstoffreferenzproben und der Nanokompositschichten zeigt, dass die Anwesenheit des Metalls während des Schichtwachstums die Bildung von sechsatomigen Kohlenstoffringclustern bei Temperaturen so niedrig wie Raumtemperatur deutlich fördert. Die Erhöhung tritt unabhängig von der Partikelgröße, -form und phase und unabhängig vom Metallgehalt auf, und betrifft eher Prozesse, die auf der Oberfläche der Nanopartikel während des Schichtwachstums stattfinden als im Bulk. Der Grad der Erhöhung hängt vom Metalltyp und -gehalt ab. Nachträgliches Tempern der C:Co und C:Cu Filme bei 700°C führt zur Segregation des Metalls an der Schichtoberfläche während in den C:V Filmen keine Veränderungen durch das Tempern auftreten. Des weiteren kommt es in den C:Co Filmen zur Graphitisierung des Kohlenstoffs durch einen „Lösungs-Diffusions-Ablagerungs“ Mechanismus ähnlich der metallvermittelten Kristallisierung in amorphem Silizium und Germanium. In den C:V, C:Cu und Kohlenstoffreferenzfilmen findet keine Graphitisierung während des Temperns statt.
3

Ion beam processing of surfaces and interfaces

Liedke, Bartosz 28 December 2011 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
4

Ion beam processing of surfaces and interfaces: Modeling and atomistic simulations

Liedke, Bartosz 23 September 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.

Page generated in 0.174 seconds