• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic description of the Fe-C-Cr-Mn-Ni-O system

Kjellqvist, Lina January 2009 (has links)
The Fe-C-Cr-Mn-Ni-O system is of fundamental importance when describing the influence of oxygen on high alloyed steels. Both solid and liquid phases are of great interest: The solid phases regarding oxidation processes like the formation of oxide layers, inner oxidation, sintering processes and high temperature corrosion. The liquid phase is of interest concerning the interaction between steel and its slag in a metallurgical context. In this thesis the thermodynamic properties of this system is described using the Calphad technique. The main idea of the Calphad technique is to describe the Gibbs energy of all phases in the system as a function of temperature, pressure and composition using appropriate thermodynamic models. When thermodynamic descriptions of all phases taking part in the system are modelled and described in a database, the equilibrium state could be calculated with a software that minimizes the total Gibbs energy. Models within the compound energy formalism are used for all solution phases, among them the ionic two-sublattice liquid model, to describe both the metallic and oxide melts. All simple spinels (Cr3O4, FeCr2O4, Fe3O4, FeMn2O4, Mn3O4, MnCr2O4, NiCr2O4, NiFe2O4, NiMn2O4) within this system are described using a four-sublattice model. In this thesis several binary and ternary systems have been assessed or partly reassessed. The Fe-C-Cr-Mn-Ni-O database achieved can be used with an appropriate thermodynamic software to calculate thermodynamic properties, equilibrium states and phase diagrams. In general, the agreement between calculated and experimental values is good. / QC 20100723

Page generated in 0.0809 seconds