• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer electrolytes for iontophoretic drug delivery

Sahota, Tarsem Singh January 1999 (has links)
No description available.
2

Metal Nanoparticles Over Active Ionic-Conductive Supports for the Reverse Water Gas Shift Reaction

Einakchi, Raha January 2016 (has links)
Increase in carbon dioxide emissions due to economic activity induce global warming. The strong increase in energy demand, mainly based on oil and coal, induces a rapid increase in CO2 in the atmosphere. Within Canada, the amount of human-produced carbon dioxide is considerable because a large portion of energy is supplied by burning of fossil fuels. The Reverse Water Gas Shift (RWGS) reaction is a promising catalytic process for the utilization and subsequent activation of carbon dioxide to carbon monoxide, which can be further converted into fuels such as gasoline. The current thesis studies the development of nano-catalytic systems for the RWGS reaction. Mono- and bi-metallic nanoparticles based on Cu, Fe, Ru and Pt were prepared using a polyol synthesis method. The catalytic performance of three different types of metal oxides (ionically conductive, mixed ionic-electronic conductive and non-conductive) was investigated for the RWGS reaction. Conductive metal oxides including samarium-doped ceria (SDC), ceria (CeO2), yttria-stabilized zirconia (YSZ) and iron III oxide (Fe2O3) were further used as the catalyst supports and the nanoparticles of Cu, Fe, CuxFe1-x (x = 50 and 95 at.%), Ru, Pt, Ru50Pt50 and RuxFe1-x (x = 80 and 90 at.%) were subsequently deposited on them. A stoichiometric mixture of H2 and CO2, i.e. H2/CO2 = 1, was used under atmospheric pressure in the temperature range of 300 - 600°C in order to evaluate the catalyst performance in terms of activity, stability and selectivity. Nanoparticles deposited on ceria-based supports (CeO2 and SDC) showed superior catalytic performance compared to other metal oxides. Among all the catalyst tested, 5 wt.% Ru50Pt50/CeO2 showed the highest CO yield and satisfactory stability for RWGS reaction. The second best catalytic systems were based on Ru90Fe10/CeO2 and Ru80Fe20/CeO2, which are more attractive from the practical point of view.
3

Synthesis and Characterization of Ionically Crosslinked Networks

Chai, Qinyuan 18 June 2013 (has links)
No description available.
4

Nonlinear Optically Active Ionically Self-Assembled Monolayer Thin Films of Organic Polymers Intercalated with an Inorganic Hectorite, Laponite RD

Shah, Smital S. 03 March 2003 (has links)
Detailed studies are presented of thin films containing a polycation, a nonlinear optically (NLO) active chromophore, and a synthetic hectorite that self-assemble into the noncentrosymmetric structure required for second order nonlinear optical responses. UV/Vis spectroscopy and ellipsometry were used as probes to monitor film growth for upto 25 deposition cycles. Exceptionally homogeneous films were obtained with regular film growth for up to the 25 cycles deposited. ISAM films self-assemble from polyelectrolyte solutions due to coulombic interactions between a charged substrate and the charged polymer in solution. Charges accumulating at the surface restrict further growth due to charge overcompensation at the surface. The entire process occurs relatively quickly as compared to other competing assembly techniques such as Langmuir-Blodgett assembly and covalent self-assembly. Previous studies indicated that second harmonic signal diminishes after the deposition of the first few bilayers. This is potentially due to adjacent layer interpenetration, which becomes prominent moving further away from the hard substrate interface. Laponite RD, a synthetic hectorite was introduced in the films in an effort to minimize interpenetration of adjacent bilayers and hence maintain chromophore orientation in every bilayer of the ISAM film. The film was deposited in quadlayers that have the following sequence: Polycation–Laponite–Polycation–Chromophore. This study is unique in its approach as it investigates the possible implications of film interpenetration on the NLO-activity of ISAM films that can be easily fabricated. It also shows the effects of different interfaces on the NLO-activities of the films. We have investigated the effect of changing the polycation from poly(allylamine hydrochloride) (PAH) and poly(diallyldimethylammonium chloride) (PDDA) and the solution pH to see how these variables affect the growth and NLO properties of ISAM films. At lower pH values (specify relevant range of values), for both polycations, intrachain and interchain repulsion is strong due to little electrostatic screening. This results in polycation deposition in relatively thin, train-like layers. At higher pH levels (specify relevant range of values here) the electrostatic screening is greater due to a higher effective ionic strength. At these conditions, intrachain and interchain repulsion is reduced and so the polymers adsorb to form thicker layers with more loops and tails than for the case at lower pH. This also results in a higher density of the chromophore in the film. Extremely smooth surfaces of Laponite RD in film were obtained as confirmed by AFM imaging on glass. Regular quadlayer growth monitored by UV/Vis spectroscopy and ellipsometry was observed for up to 25 quadlayers. Second harmonic generation (SHG) signal was not conclusively affected by the presence of laponite as the decrease of signal was seen after the first few layers in the laponite containing films. This decrease was however was not as sharp in the films containing laponite as in the films that did not contain laponite. It was also noted that the SHG was not so much affected by the number of layers deposited but more so by the distance of the chromophore layer from the hard glass interface. This study thus brings to light the very important effect of the glass interface on the NLO-activity of these films. / Master of Science
5

Nonlinear Optical Properties and Structural Characteristics of Ionically Self-Assembled Nanoscale Polymer Films Influenced by Ionic Concentration and Incorporation of Monomer Chromophores

Neyman, Patrick J. 29 May 2002 (has links)
Ionically self-assembled monolayer (ISAM) films are typically an assemblage of oppositely charged polymers built layer by layer through coulombic attraction utilizing an environmentally friendly process to form ordered structures that are uniform, molecularly smooth, and physically robust. ISAM films have been shown to be capable of the noncentrosymmetric order requisite for a second-order nonlinear optical response. However, films fabricated with a nonlinear optical (NLO) polymer result in significant cancellation of the chromophore orientations. This cancellation occurs by two mechanisms: competitive orientation due to the ionic bonding of the polymer chromophore with the subsequent polycation layer, and random orientation of the chromophores within the bulk of each polyanion layer. A reduction in film thickness accompanied by an increase in net polar ordering is one possible avenue to obtain the second-order nonlinear optical susceptibility chi(2) necessary for electro-optic devices. In this thesis, we will discuss the structural characteristics of ISAM films and explore three novel approaches to obtain the desired characteristics for nonlinear optical response. One approach involves the variation of solution parameters of several different cationic polymers separately from the polyanion solution in order to reduce the competitive chromophore orientation at the layer interfaces and to reduce the thickness of the inactive polycation layer. We have found that the complexity of ISAM films does not allow large chi(2) values in polyion-based films, and that the selection of the polymer cation is vital to achieve second harmonic generation (SHG) at all. The second approach involves the incorporation of dianionic molecules into ISAM films in order to eliminate both competitive chromophore orientation and random chromophore orientation inherent with polymer chromophores. We have also studied the effects of complexing dianionic chromophores with beta-cyclodextrin in order to increase solubility and improve chromophore orientation. This approach fails because the outermost monolayer of dianionic chromophore is only tethered to the preceding polycation layer by a single ionic bond for each molecule, so each chromophore can by dissociated during the following immersion into the cation solution. Finally, we have introduced a novel approach of hybrid covalent / ionic self-assembly which overcomes these disadvantages and yields a substantial increase in chi(2) due to the chromophore being locked in place to the preceding polycation layer by a covalent bond. The films fabricated in this manner yield a chi(2) that rival any polymer-polymer films despite the very low first-order molecular hyperpolarizability beta of the incorporated monomer. This suggests that incorporation of high beta molecules may result in significant improvement of chi(2), holding high promise for the hybrid covalent / ionic self-assembly technique. / Master of Science
6

Organic Self-Assembled Films for Nonlinear Optics: Film Structure, Composition and Kinetics of Film Formation

Garg, Akhilesh 12 September 2008 (has links)
Organic materials exhibiting second-order non-linear optical (NLO) properties are a key to the development of advanced electro-optic (EO) modulators used in fiber-optic communications system. This work addresses the fabrication and characterization of organic materials with NLO properties using a self-assembly approach by alternately dipping a charged substrate into positively and negatively charged polymers to build up layer-by-layer (LbL) films. The effect of solution pH on the formation of LbL films fabricated using the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly{1-[p-(3–-carboxy-4–-hydroxyphenylazo)benzenesulfonamido]-1,2-ethandiyl} (PCBS) was studied using a quartz crystal microbalance with dissipation (QCM-D) monitoring, ellipsometry, absorbance, and second harmonic generation (SHG) measurements. PCBS has an azo-benzene chromophore side group that, when sufficiently oriented, results in measurable SHG. Films of PAH/PCBS fabricated at neutral pH where both PAH and PCBS are highly charged led to thin bilayers, ~1 nm, with a 1:1 molar ratio of PCBS:PAH. This molar ratio was found to be important for long-range polar ordering of PCBS in these films. Increasing the rate of convection was found to reduce the time required for complete adsorption of the polyion. This can have a significant impact on fabrication of films with high bilayer numbers. A variation of the above technique, which involves adsorbing one of the constituents electrostatically and another covalently, was studied using PAH and a reactive dye, Procion Brown (PB), which has a significantly higher hyperpolarizability than PCBS. It was found that a high pH, ~10.5, was important for achieving covalent attachment of the PB to the underlying PAH films. This resulted in much higher SHG intensities compared to when PB was deposited pH at 8.5-9.5 where the attachment of PB was due to a combination of electrostatic and covalent interactions. QCM-D results for PAH/PB films revealed the presence of a high percentage of unreacted amine groups in the underlying PAH film. A rate constant value for PB attachment step to the underlying PAH was also calculated. To enhance the SHG intensity of these films, silver nanoprisms were synthesized and deposited onto films using physisorption. An enhancement in the SHG intensity was observed for both PAH/PCBS and PAH/PB films. / Ph. D.

Page generated in 0.0682 seconds