• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metal Nanoparticles Over Active Ionic-Conductive Supports for the Reverse Water Gas Shift Reaction

Einakchi, Raha January 2016 (has links)
Increase in carbon dioxide emissions due to economic activity induce global warming. The strong increase in energy demand, mainly based on oil and coal, induces a rapid increase in CO2 in the atmosphere. Within Canada, the amount of human-produced carbon dioxide is considerable because a large portion of energy is supplied by burning of fossil fuels. The Reverse Water Gas Shift (RWGS) reaction is a promising catalytic process for the utilization and subsequent activation of carbon dioxide to carbon monoxide, which can be further converted into fuels such as gasoline. The current thesis studies the development of nano-catalytic systems for the RWGS reaction. Mono- and bi-metallic nanoparticles based on Cu, Fe, Ru and Pt were prepared using a polyol synthesis method. The catalytic performance of three different types of metal oxides (ionically conductive, mixed ionic-electronic conductive and non-conductive) was investigated for the RWGS reaction. Conductive metal oxides including samarium-doped ceria (SDC), ceria (CeO2), yttria-stabilized zirconia (YSZ) and iron III oxide (Fe2O3) were further used as the catalyst supports and the nanoparticles of Cu, Fe, CuxFe1-x (x = 50 and 95 at.%), Ru, Pt, Ru50Pt50 and RuxFe1-x (x = 80 and 90 at.%) were subsequently deposited on them. A stoichiometric mixture of H2 and CO2, i.e. H2/CO2 = 1, was used under atmospheric pressure in the temperature range of 300 - 600°C in order to evaluate the catalyst performance in terms of activity, stability and selectivity. Nanoparticles deposited on ceria-based supports (CeO2 and SDC) showed superior catalytic performance compared to other metal oxides. Among all the catalyst tested, 5 wt.% Ru50Pt50/CeO2 showed the highest CO yield and satisfactory stability for RWGS reaction. The second best catalytic systems were based on Ru90Fe10/CeO2 and Ru80Fe20/CeO2, which are more attractive from the practical point of view.
2

Defect Laden Metal Oxides and Oxynitrides for Sustainable Low Temperature Carbon Dioxide Conversion to Fuel Feedstocks

Maiti, Debtanu 28 June 2018 (has links)
The current energy and environmental scenario in the world demands acute attention on sustainable repurposing of waste CO2 to high value hydrocarbons that not only addresses the CO2 mitigation problem, but also provides pathways for a closed loop synthetic carbon cycle. Difference in the scales of global CO2 emissions (about 40 Gtpa, 2017) and the carbon capture and sequestration (CCS) facilities (estimated cumulative 40 Mtpa, 2018) provokes active research on this topic. Solar thermochemical (STC) and visible light photocatalysis are two of the most promising routes that have garnered attention for this purpose. While STC has the advantages of high CO2 conversion rates, it operates at high temperatures (more than 1000 °C) limiting its industrial implementation. Photocatalysis, on the contrary, is plagued by the poor quantum efficiency and conversion rates, although its exhibits the benefits of low temperature operation. Thus, any significant progress towards low temperature STC and visible light photocatalytic CO2 reduction is a giant leap towards a greener and sustainable energy solution. This dissertation is an effort towards improving both the STC and photocatalytic CO2 reduction. Reverse water gas shift - chemical looping (RWGS-CL) is a modified STC approach that has the potential for low temperature CO2 conversion. RWGS-CL process uses mixed metal oxides like perovskite oxides (ABO3) for the conversion to CO, a potential feedstock for subsequent hydrocarbon production. Generation of oxygen vacancy defects on these perovskite oxides is a key step of RWGS-CL and thus, oxygen vacancy formation energy has been found to be a key descriptor for this process. Using density functional theory based calculations, this intrinsic material property has been used towards rational design of better catalysts. Highest rate of CO2 conversion at the low temperatures of 450 °C was demonstrated by earth abundant perovskite oxide via RWGS-CL. This low temperature and stable CO2 conversion process enables thermal integration with subsequent Fischer Tropsch processes for the hydrogenation of CO to hydrocarbons. Parallel to the developments on materials discovery, another crucial parameter that deserves attention is the surface termination effects of the perovskite oxides. Hence, the site specificity of the bulk and surface oxygen vacancies have been probed in detail towards elucidating the CO2 conversion performance over these materials. In the view of recent progress on the growth of selective crystal facets and terminations, this study opens new avenues for enhanced CO2 conversion performance not only through bulk composition variation, but also via exposing desired crystal facets. Type-II semiconductor heterojunctions (staggered type) are promising candidates for efficient photocatalytic reactions, not only because of their capabilities of electronic density of states tuning, but also their ability to segregate the excited electrons and holes into different materials thereby restricting exciton recombination. Metal oxynitride heterojunctions have recently demonstrated promising activity on visible light water splitting. Elucidating the structure-function relationships for these materials can pave the way towards designing better CO2 conversion photocatalysts. This dissertation focuses on unravelling the roles of material composition, anion vacancy defects and lattice strain towards modulating the electronic density of states of lateral and vertical heterojunctions of (ZnO)X(AlN)1-X and (ZnO)X(GaN)1-X. The heterojunctions consist of periodic potential wells that allows for restricting interlayer charge transport. Increased ZnO concentration was explicitly shown to decrease the band gap due to N 2p and Zn-3d repulsion. Biaxial and vertical compressive strain effected increased band gap while tensile strain reduced the same. Oxygen vacancies was found to have different effect on the electronic state of the materials. When present in charged state (+2), it promotes mid gap state formation, while in neutral state it revealed increased electronic densities near the valence band and conduction band edges. These fundamental site specific material property tuning insights are essential for designing better photocatalysts for future.
3

Study of Reverse Water Gas Shift reaction using bimetallic catalysts on active supports : The case of unpromoted and K-promoted FeCu/CeO2 / The case of unpromoted and K-promoted FeCu/CeO2 : Studie av icke-promoterad och K-promoterad FeCu/CeO2

Sala, Carlo January 2022 (has links)
Reverse Water Gas Shift Reaction (RWGS) är en attraktiv lösning för CO2-använding och minskning av utsläppen i atmosfären. Denna reaktion begränsas av termodynamiken och det finns problem med storskalig tillämpning. För att förbättra genomförandet av processen krävs utveckling av en effektiv katalysator. I mosats till typiska undersökningar som använder katalytiska metaller på en inert bärare, i denna undersökning användas en bimetallisk katalysator på en aktiv bärare.  RWGS-reaktionen studerades genom att använda Cu-Fe/CeO2-katalysator den K-promoterade motsvarigheten i olika mängder. Katalysatorerna testades i en fastbäddsreaktor. Katalysatorerna syntetiserades genom hydrotermisk metod och successiv impregnering av aktiva metaller. De framställda katalysatorerna analyserades med hjälp av BET-analys, H2-temperaturprogrammerad reduktion och röntgendiffraktion (XRD). Temperatur och H2/CO2 effekterna bedömdes. Experimentella resultat visade att Cu-Fe/CeO2 uppvisar avsevärd katalytisk aktivitet vid temperaturer högre än 500°C. Den CO2 omvandling med bimetalliska katalysatorn varierade mellan 24 % och 100 % avjämviktsvärdet med GHSV 360 000 h-1. Dessutom varierade CO selektivitet i intervallet mellan 70% och 95%. K-promoterad katalysator uppvisade lägre aktivitet antagligen på grund av partiell täckning av metalliska aktiva ytan, vilket resulterade i lägre omvandling (10%-~50% av jämviktsvärdet). Längre experiment (69-100 timmar) för de icke-promotoriserade katalysatorerna uppvisade inga avaktivering eller aktivitet/selektivitetsförlust i motsats till den K-promoterade katalysatorn som uppvisade en långsam aktivitetsavklingning troligen på grund av sintring. / Reverse Water Gas Shift Reaction (RWGS)is an attractive solution for CO2 utilizationand consecutive reduction of emissions in the atmosphere. This reaction is limited by thermodynamics while there are problems with its implementation at large scale. To improve the process implementation, development of an efficient and effective catalyst is required. Contrary to typical studies where catalytically active metals are deposited on inert supports, in this study the investigation of a bimetallic (Fe-Cu) catalyst on an active support was carried out. In particular, the RWGS reaction was studied over Cu − Fe/CeO2 catalyst with and without potassium promotion by means of catalytic activity tests in a fixed bed reactor. The catalysts were synthesized by hydrothermal method and successive impregnation of active metals. All the materials were characterized by means of BET analysis, H2 temperature programmed reduction and x-ray diffraction. The effects of temperature and H2/CO2 molar ratio were assessed. Experimental results showed that Cu −Fe and exhibit considerable catalytic activity at temperatures greater than 500°C. CO2 conversions of 24% to 100% of the equilibrium conversion were achieved at gas hourly space velocities of 360 000 h−1. Selectivity for CO varied between 70-95% Potassium promotion plausibly results to a partial coverage of active sites, and thus leading to lower conversion (10%-~50% of the equilibrium value). Longer runs (69-100h) showed no signs of deactivation and activity/selectivity loss for the unpromoted catalysts, while the K-promoted catalyst exhibited a slow activity decay probably due to sintering.
4

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction

Abdollahi, Farhang 05 April 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
5

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction

Abdollahi, Farhang 05 April 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
6

Carbon Dioxide Gas Separation from Syngas to Increase Conversion of Reverse Water Gas Shift Reaction via Polymeric and Mixed Matrix Membranes

Rose, Lauren 18 July 2018 (has links)
Membranes are a promising, effective and energy efficient separation strategy for effluent gases in the Reverse Water Gas Shift (RWGS) reaction to increase the overall conversion of CO2 to CO. This process involves a separation and recycling process to reuse the unreacted CO2 from the RWGS reactor. The carbon monoxide produced from this reaction, alongside hydrogen (composing syngas), can be used in the Fischer-Tropsch process to create synthetic fuel, turning stationary CO2 emissions into a useable resource. A literature review was performed to select suitable polymers with high CO2 permeability and selectivities of CO2 over CO and H2. PDMS (polydimethylsiloxane) was selected and commercial and in-house PDMS membranes were tested. The highest CO2 permeability observed was 5,883 Barrers, including a CO2/H2 selectivity of 21 and a CO2/CO selectivity of 9, with ternary gas feeds. HY zeolite, silica gel and activated carbon were selected from previous research for their CO2 separation capabilities, to be investigated in PDMS mixed matrix membranes in 4 wt % loadings. Activated carbon in PDMS proved to be the best performing mixed matrix membrane with a CO2 permeability of 2,447 Barrers and comparable selectivities for CO2/H2 and CO2/CO of 14 and 9, respectively. It was believed that swelling, compaction and the homogeneity of the selective layer were responsible for trends in permeability with respect to driving force. The HY and silica gel mixed matrix PDMS membranes were believed to experience constraints in performance due to particle and polymer interfaces within the membrane matrix.
7

Gas Separation by Adsorption in Order to Increase CO2 Conversion to CO via Reverse Water Gas Shift (RWGS) Reaction

Abdollahi, Farhang January 2013 (has links)
In this research project, adsorption is considered in conjunction with the reverse water gas shift reaction in order to convert CO2 to CO for synthetic fuel production. If the CO2 for this process can be captured from high emitting industries it can be a very good alternative for reduced fossil fuel consumption and GHG emission mitigation. CO as an active gas could be used in Fischer-Tropsch process to produce conventional fuels. Literature review and process simulation were carried out in order to determine the best operating conditions for reverse water gas shift (RWGS) reaction. Increasing CO2 conversion to CO requires CO2/CO separation downstream of the reactor and recycling unreacted CO2 and H2 back into the reactor. Adsorption as a viable and cost effective process for gas separation was chosen for the CO2/CO separation. This was started by a series of adsorbent screening experiments to select the best adsorbent for the application. Screening study was performed by comparing pure gas isotherms for CO2 and CO at different temperatures and pressures. Then experimental isotherm data were modeled by the Temperature-Dependent Toth isotherm model which provided satisfactory fits for these isotherms. Henry law’s constant, isosteric heat of adsorption and binary mixture prediction were determined as well as selectivity for each adsorbent. Finally, the expected working capacity was calculated in order to find the best candidate in terms of adsorption and desorption. Zeolite NaY was selected as the best candidate for CO2/CO separation in adsorption process for this project. In the last step breakthrough experiments were performed to evaluate operating condition and adsorption capacity for real multi component mixture of CO2, CO, H2 in both cases of saturated with water and dry gas basis. In multi components experiments zeolite NaY has shown very good performance to separate CO2/CO at low adsorption pressure and ambient temperature. Also desorption experiment was carried out in order to evaluate the working capacity of the adsorbent for using in industrial scale and eventually temperature swing adsorption (TSA) process worked very well for the regeneration step. Integrated adsorption system downstream of RWGS reactor can enhance the conversion of CO2 to CO in this process significantly resulting to provide synthetic gas for synthetic fuel production as well as GHG emission mitigation.
8

Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis

Daza, Yolanda Andreina 29 March 2016 (has links)
CO2 global emissions exceed 30 Giga tonnes (Gt) per year, and the high atmospheric concentrations are detrimental to the environment. In spite of efforts to decrease emissions by sequestration (carbon capture and storage) and repurposing (use in fine chemicals synthesis and oil extraction), more than 98% of CO2 generated is released to the atmosphere. With emissions expected to increase, transforming CO2 to chemicals of high demand could be an alternative to decrease its atmospheric concentration. Transportation fuels represent 26% of the global energy consumption, making it an ideal end product that could match the scale of CO2 generation. The long-term goal of the study is to transform CO2 to liquid fuels closing a synthetic carbon cycle. Synthetic fuels, such as diesel and gasoline, can be produced from syngas (a combination of CO and H2) by Fischer Tropsch synthesis or methanol synthesis, respectively. Methanol can be turned into gasoline by MTO technologies. Technologies to make renewable hydrogen are already in existence, but CO is almost exclusively generated from methane. Due to the high stability of the CO2 molecule, its transformation is very energy intensive. Therefore, the current challenge is developing technologies for the conversion of CO2 to CO with a low energy requirement. The work in this dissertation describes the development of a recyclable, isothermal, low-temperature process for the conversion of CO2 to CO with high selectivity, called Reverse Water Gas Shift Chemical Looping (RWGS-CL). In this process, H2 is used to generate oxygen vacancies in a metal oxide bed. These vacancies then can be re-filled by one O atom from CO2, producing CO. Perovskites (ABO3) were used as the oxide material due to their high oxygen mobility and stability. They were synthesized by the Pechini sol-gel synthesis, and characterized with X-ray diffraction and surface area measurements. Mass spectrometry was used to evaluate the reducibility and re-oxidation abilities of the materials with temperature-programmed reduction and oxidation experiments. Cycles of RWGS-CL were performed in a packed bed reactor to study CO production rates. Different metal compositions on the A and B site of the oxide were tested. In all the studies, La and Sr were used on the A site because their combination is known to enhance oxygen vacancies formation and CO2 adsorption on the perovskites. The RWGS-CL was first demonstrated in a non-isothermal process at 500 °C for the H2-reduction and 850 °C for the CO2 conversion on a Co-based perovskite. This perovskite was too unstable for the H2 treatment. Addition of Fe to the perovskite enhanced its stability, and allowed for an isothermal and recyclable process at 550 °C with high selectivity towards CO. In an effort to decrease the operating temperature, Cu was incorporated to the structure. It was found that Cu addition inhibited CO formation and formed very unstable oxide materials. Preliminary studies show that application of this technology has the potential to significantly reduce CO2 emissions from captured flue gases (i.e. from power plants) or from concentrated CO2 (adsorbed from the atmosphere), while generating a high value chemical. This technology also has possible applications in space explorations, especially in environments like Mars atmosphere, which has high concentrations of atmospheric carbon dioxide.

Page generated in 0.0275 seconds