• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defect Laden Metal Oxides and Oxynitrides for Sustainable Low Temperature Carbon Dioxide Conversion to Fuel Feedstocks

Maiti, Debtanu 28 June 2018 (has links)
The current energy and environmental scenario in the world demands acute attention on sustainable repurposing of waste CO2 to high value hydrocarbons that not only addresses the CO2 mitigation problem, but also provides pathways for a closed loop synthetic carbon cycle. Difference in the scales of global CO2 emissions (about 40 Gtpa, 2017) and the carbon capture and sequestration (CCS) facilities (estimated cumulative 40 Mtpa, 2018) provokes active research on this topic. Solar thermochemical (STC) and visible light photocatalysis are two of the most promising routes that have garnered attention for this purpose. While STC has the advantages of high CO2 conversion rates, it operates at high temperatures (more than 1000 °C) limiting its industrial implementation. Photocatalysis, on the contrary, is plagued by the poor quantum efficiency and conversion rates, although its exhibits the benefits of low temperature operation. Thus, any significant progress towards low temperature STC and visible light photocatalytic CO2 reduction is a giant leap towards a greener and sustainable energy solution. This dissertation is an effort towards improving both the STC and photocatalytic CO2 reduction. Reverse water gas shift - chemical looping (RWGS-CL) is a modified STC approach that has the potential for low temperature CO2 conversion. RWGS-CL process uses mixed metal oxides like perovskite oxides (ABO3) for the conversion to CO, a potential feedstock for subsequent hydrocarbon production. Generation of oxygen vacancy defects on these perovskite oxides is a key step of RWGS-CL and thus, oxygen vacancy formation energy has been found to be a key descriptor for this process. Using density functional theory based calculations, this intrinsic material property has been used towards rational design of better catalysts. Highest rate of CO2 conversion at the low temperatures of 450 °C was demonstrated by earth abundant perovskite oxide via RWGS-CL. This low temperature and stable CO2 conversion process enables thermal integration with subsequent Fischer Tropsch processes for the hydrogenation of CO to hydrocarbons. Parallel to the developments on materials discovery, another crucial parameter that deserves attention is the surface termination effects of the perovskite oxides. Hence, the site specificity of the bulk and surface oxygen vacancies have been probed in detail towards elucidating the CO2 conversion performance over these materials. In the view of recent progress on the growth of selective crystal facets and terminations, this study opens new avenues for enhanced CO2 conversion performance not only through bulk composition variation, but also via exposing desired crystal facets. Type-II semiconductor heterojunctions (staggered type) are promising candidates for efficient photocatalytic reactions, not only because of their capabilities of electronic density of states tuning, but also their ability to segregate the excited electrons and holes into different materials thereby restricting exciton recombination. Metal oxynitride heterojunctions have recently demonstrated promising activity on visible light water splitting. Elucidating the structure-function relationships for these materials can pave the way towards designing better CO2 conversion photocatalysts. This dissertation focuses on unravelling the roles of material composition, anion vacancy defects and lattice strain towards modulating the electronic density of states of lateral and vertical heterojunctions of (ZnO)X(AlN)1-X and (ZnO)X(GaN)1-X. The heterojunctions consist of periodic potential wells that allows for restricting interlayer charge transport. Increased ZnO concentration was explicitly shown to decrease the band gap due to N 2p and Zn-3d repulsion. Biaxial and vertical compressive strain effected increased band gap while tensile strain reduced the same. Oxygen vacancies was found to have different effect on the electronic state of the materials. When present in charged state (+2), it promotes mid gap state formation, while in neutral state it revealed increased electronic densities near the valence band and conduction band edges. These fundamental site specific material property tuning insights are essential for designing better photocatalysts for future.
2

First principles-based atomistic modeling of the structural properties of silicon-oxide nanomaterials

Lee, Sangheon, 1978- 07 December 2010 (has links)
We have developed continuous random network (CRN) model based Metropolis Monte Carlo simulation tools which are capable of predicting the structural properties of amorphous semiconductor and oxide materials as well as their interface. To bolster the reliability of the CRN model, we have developed force fields based on gradient corrected density functional theory (DFT) calculations. Our in-house CRN-MMC tools have been massively parallelized, which allows us to create fairly large model structures within a reasonable computational time. Using the integrated CRN-MMC tools, we have elucidated the complex growth and structure of self-interstitial and vacancy clusters in silicon and the effect of strain on the structure and stability of the defect clusters. Our work for vacancy clusters suggests that small vacancy defects exclusively favor fourfold-coordination thermodynamically with no significant kinetic limitation rather than void-like structure formation, which has widely been adapted to explain the behavior and properties of vacancy defects. Our results also highlight the identification of stable high-symmetry fourfold-coordinated V₁₂ and V₃₂ clusters that could be expected to exist to a large extent in a vacancy rich region although its direct characterization appears impractical at present. Our work for self-interstitial clusters provides the first theoretical support for earlier experiments which suggest a shape transition from compact to elongated structures around n = 10. When the cluster size is smaller than 10, the stable I₄ and I₈ compact clusters are found to inhibit the formation of elongated defects, whereas the newly discovered fourfold-coordinated I₁₂ state is found to serve as an effective nucleation center for large extended defects. Our CRN-MMC approach also enabled us to elucidate the underlying mechanisms of synthesis and manipulation of Si rich insulators as well as the fundamental understanding of the relationship between the atomic structure and properties. We developed a valence force field based on a modified Keating model for the structure and energetics of amorphous Si rich oxide materials. In particular, our work emphasizes the importance of correctly describing the wide Si-O-Si angle distribution. Our work also suggests that the relative rigidity between Si and SiO₂ matrices is critical in determination of the Si/SiO₂ interface structure. The present potential model coupled with the CRN-MMC method can be used to create structural models (free of coordination defects) for complex a-SiO[subscript x]-based materials, which will further allow thorough studies of the properties of these materials. / text
3

Etude du comportement du tungstène sous irradiation : applications aux réacteurs de fusion / Study of the behavior of tungsten under irradiation : application to fusion reactors

Sidibe, Moussa 26 February 2014 (has links)
La fusion thermonucléaire est envisagée comme nouvelle source énergétique pratiquement inépuisable. Le projet ITER « International Thermonuclear Experimental Reactor » doit démontrer la faisabilité scientifique et la maitrise de la fusion thermonucléaire. Le tungstène (W) a été choisi pour recouvrir le « divertor », un composant essentiel du réacteur ITER. Il sera soumis à des conditions extrêmes de fonctionnement : au bombardement neutronique, à d’intenses flux de chaleur et de particules (hélium, hydrogène). Ces conditions induiront dans le W des défauts et introduiront de l’hélium et de l’hydrogène, qui pourront conduire à des modifications de sa microstructure et de ses propriétés physiques, chimiques et mécaniques. L’objectif de ce travail est d’étudier, à l’échelle atomique, l’évolution de la microstructure du tungstène sous irradiation. Afin de simuler les atomes de recul générés par les irradiations aux neutrons, des échantillons de W ont été irradiés avec des ions lourds et/ou implantés avec de l’hélium. La nature des défauts a été étudiée à l’aide de la Spectroscopie d’Annihilation de Positons (PAS). Les résultats montrent que les irradiations aux ions lourds conduisent à la formation de monolacunes et de clusters lacunaires dont la taille et la concentration augmente avec la fluence. Des irradiations ou des recuits effectués à une température supérieure à 450 K conduisent à l’agglomération des défauts lacunaires essentiellement par migration des monolacunes. Pour des recuits à très hautes températures (1773 K), les observations MET montrent la présence de cavités nanométriques (∼10 nm). Les implantations avec les ions 4He 60 keV induisent dans le W une distribution de défauts complexes de type nHe-mv, ainsi qu’une faible concentration de monolacunes v. Une majorité de complexes He-v est formée pour la faible fluence et la fraction des défauts complexes (nHe-mv) augmente quand la fluence augmente. La nature et la distribution des défauts évolue en fonction de la température de recuit et dépend du ratio [He]/[v]. Le premier stade de recuit des défauts lacunaires (∼ 450 K) est masqué par la présence de l’hélium dans les défauts lacunaires. Pour un ratio [He]/[v] supérieur à 1, un stade d’agglomération des défauts est clairement observé à partir de 1623 K. Pour des conditions d’introduction de défauts et d’hélium proches de celles attendus dans les réacteurs de fusion (He/dpa allant de 0.03 à 8 appm He/dpa), la signature positon après irradiation est similaire à celle mesurée dans des échantillons seulement endommagés dans des conditions équivalentes mais sans introduire de l’hélium. Pour des rapports He/dpa allant de 0.3 à 8 appm He/dpa, les recuits révèlent des différences de distribution en taille et en concentration des défauts lacunaires. La présence d’hélium dans les amas lacunaires modifie les caractéristiques d’annihilation des positons et favorise la stabilisation des amas lacunaires. / Thermonuclear fusion is envisaged as a new energy source practically inexhaustible. The project ITER "International Thermonuclear Experimental Reactor" must demonstrate the scientific feasibility and the control of thermonuclear fusion. Tungsten (W) has been chosen to cover the "divertor", a critical component of the ITER reactor. It will be subjected to extreme operating conditions : to the neutron bombardment, to intense fluxes of heat and particles (helium, hydrogen). These conditions will induce defects in the W and will introduce helium and hydrogen which may lead to changes in microstructure and physical, chemical and mechanical properties. The aim of this work is to study, at the atomic scale, the evolution of tungsten microstructure under irradiation. In order to simulate the recoil atoms generated by the neutron irradiation, W samples were irradiated with heavy ions and/or implanted with helium ions. The nature of the defects has been studied by using Positron Annihilation Spectroscopy (PAS). The results show that irradiations with heavy ions lead to the formation of monovacancies and vacancy clusters whose size and concentration increase with the fluence. Irradiations or annealing carried out at a temperature above 450 K lead to agglomeration of vacancy defects essentially by monovacancies migration. For annealing at high temperatures (1773 K), the TEM observations indicate the presence of nanometric cavities (~ 10 nm). The implantations with 60 keV 4He ions induce in the W a distribution of complex defects like nHe-mv, as well as a low concentration of monovacancies v. A majority of complex He-v is formed for the low fluence and the fraction of complex defects (nHe-mv) increases as the flunce increases. The nature and distribution of defects evolve with annealing temperature and depend on the ratio [H]/[v]. The first stage annealing of vacancy defects (~ 450 K) is masked by the presence of helium in the vacancy defects. For a ratio [He]/[v] greater than 1, an agglomeration stage of defects is clearly observed from 1623 K. For conditions of introduction of defects and helium close to those expected in fusion reactors (He/dpa from 0.03-8 appm He/dpa), positron signature after irradiation is similar to that measured in samples damaged in equivalent conditions without introducing helium. For ratio He/dpa from 0.3 to 8 appm He/dpa, the annealing reveal differences in size distribution and concentration of vacancy defects. The presence of helium in the vacancy clusters changes the annihilation characteristics of positron and favors to stabilize the vacancy clusters.
4

Defect Studies In Metals, Alloys, and Oxides By Positron Annihilation Spectroscopy and Related Techniques

Agarwal, Sahil 01 September 2021 (has links)
No description available.
5

Identification of equilibrium and irradiation-induced defects in nuclear ceramics : electronic structure calculations of defect properties and positron annihilation characteristics / Calcul de structure électronique des propriétés des défauts et caractéristiques d' annihilation de positions dans les céramiques nucléaires : identification des défauts d'équilibre et créés par l'irradiation

Wiktor, Julia 02 October 2015 (has links)
Durant l'irradiation en réacteur la fission des atomes d'actinides entraine la création de grandes quantités de défauts, qui affecte les propriétés physiques et chimiques des matériaux dans le réacteur, en particulier les matériaux combustibles ou de structure. Une des méthodes non destructives pouvant être utilisées pour caractériser les défauts induits par irradiation, vides ou contenant les produits de fission, est la spectroscopie d'annihilation de positons (SAP). Cette technique expérimentale consiste à détecter le rayonnement généré lors de l'annihilation du paire électron-positon dans un échantillon et en déduire les propriétés de la matière étudiée. Les positons peuvent être piégés dans les défauts de type lacunaire dans les solides, et en mesurant leur temps de vie et les distribution de moment du rayonnement d'annihilation, on peut obtenir des informations sur les volumes libres et les environnements chimiques des défauts. Dans ce travail, des calculs de structure électronique des caractéristiques d'annihilation de positons ont été effectués en utilisant la théorie de la fonctionnelle de la densité à deux composants (TCDFT). Pour calculer les distributions de moment rayonnement d'annihilation, nous avons implémenté les méthodes nécessaires dans le code de calcul libre ABINIT. Les résultats théoriques ont été utilités pour contribuer à l'identification des défauts d'irradiation dans deux céramiques nucléaires, le carbure de silicium (SiC) et le dioxyde d'uranium (UO2). / During in-pile irradiation the fission of actinide nuclei causes the creation of large amounts of defects, which affect the physical and chemical properties of materials inside the reactor, in particular the fuel and structural materials. Positron annihilation spectroscopy (PAS) can be used to characterize irradiation induced defects, empty or containing fission products. This non-destructive experimental technique involves detecting the radiation generated during electron-positron annihilation in a sample and deducing the properties of the material studied. As positrons get trapped in open volume defects in solids, by measuring their lifetime and momentum distributions of the annihilation radiation, one can obtain information on the open and the chemical environments of the defects. In this work electronic structure calculations of positron annihilation characteristics were performed using two-component density functional theory (TCDFT). To calculate the momentum distributions of the annihilation radiation, we implemented the necessary methods in the open-source ABINIT program. The theoretical results have been used to contribute to the identification of the vacancy defects in two nuclear ceramics, silicon carbide (SiC) and uranium dioxide (UO2).
6

Experimental study of the interaction of vacancy defects with Y, O and Ti solutes to better understand their roles in the nanoparticles formation in ODS steels / L’étude expérimentale de l’interaction entre défauts lacunaires et l’Y, O, Ti pour comprendre leur rôles dans la formation des nanoparticules d’alliages ODS

He, Chenwei 14 November 2014 (has links)
Les conditions sévères de fonctionnement des réacteurs du futur, Génération-IV, -haute température et fortes irradiations-nécessitent le développement de matériaux adaptés. Les aciers ODS (Oxide Dispersion Strengthened) sont des candidats très compétitifs pour le gainage du combustible en raison de leurs excellentes propriétés de gonflement et de fluage. Ces atouts majeurs sont induits par la fine dispersion de nanoparticules d’oxydes (Y, O, Ti) obtenue par co-broyage de poudres de la matrice et d’oxyde dont les conditions sont à optimiser pour maitriser la distribution en taille et composition de ces nanoparticules. Dans l’objectif de mieux comprendre le mécanisme de formation de ces nanoparticules à l’échelle atomique, la présente thèse met à profit l’utilisation de la spectroscopie d’annihilation de positons (PAS) et de la spectrométrie de masse d’ions secondaires pour étudier l’interaction des défauts lacunaires avec des solutés Y, O et Ti et évaluer leur rôle dans la formation des nanoparticules. Les irradiations avec des ions He ont été effectuées pour révéler les propriétés des défauts lacunaires et les implantations d’Y, Ti, O ont été réalisées pour étudier les interactions de ces éléments Y, Ti, O avec les lacunes dans la matrice de fer. La distribution des défauts en profondeur indique la présence de défauts lacunaires avec une taille plus petite dans la région où la concentration d’Y, Ti, O est la plus élevée. Cet effet est plus prononcé pour O, Y et Ti respectivement. Il est expliqué par la formation de V-X (X=O, Y, Ti) complexes qui réduisent la probabilité de la mobilité et d’agglomération des défauts lacunaires. Les recuits des échantillons implantés Y et O révèlent que des complexes O-lacune sont mobiles à température ambiante, et que l’yttrium ne diffuse pas jusqu’à 550°C alors que des complexes Y-lacunes sont encore détectés comme cela est attendu par des résultats théoriques. Un modèle des premières étapes de la nucléation des nanoparticules est proposé en utilisant les résultats obtenus dans cette thèse. / The severe operating conditions of the future nuclear reactor, Generation-IV, -high temperature and high irradiation damage-, require the adapted materials development. Oxide-dispersion strengthened (ODS) alloy is one of the most potential candidates expected to be used for fuel cladding material because of their outstanding swelling and creep properties. Their excellent properties are induced by the fine dispersion of oxide nanoparticles (Y, O, Ti), obtained by mechanical alloying of steel and oxide powders and which has to be better mastered. But the atomic scale clustering mechanism of these nanoparticles is not yet cleared. In this context, the present thesis using positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry (SIMS) sheds light on the interaction of vacancy defects with Y, O and Ti solutes to better understand their roles in the nanoparticles formation. The He irradiations have been performed to reveal the vacancy defects properties and Y, Ti, O implantations realized to study the Y, Ti, O-vacancy interactions in bcc Fe matrix. In all cases, the defects depth distribution shows a lower size of vacancy defects in the region where the concentration of the incident ions Y, Ti and O is the highest. This effect of the ions on the damage formation is more pronounced for respectively O, Y and Ti. It is explained by the formation of V-X (X=O, Y, Ti) complexes which reduce the mobility and agglomeration probability of the vacancy defects. The annealing of the Y and O implanted samples reveals that some O-vacancy complexes are mobile at room temperature and Y doesn’t diffuse up to 550°C whilst Y-vacancy complexes remain as it is expected from theory. A model of the first steps of the ODS nanoparticles nucleation is proposed by using the results obtained in this thesis.
7

Etude du comportement thermique des gaz de fission dans l'UO₂ en présence de défauts d'irradiation / Thermal behavior of fission gases in UO₂ considering radiation-induced defects

Gérardin, Marie 19 December 2018 (has links)
Lors de l’irradiation en réacteur, des gaz de fission tels que le xénon et le krypton sont produits. Ces gaz diffusent dans le combustible, mais peuvent également précipiter sous forme de bulles. En outre,les réactions de fission conduisent à la formation de défauts ponctuels (lacunes ou interstitiels) et sous forme d’amas (dislocations ou cavités). L’obtention de données expérimentales sur la migration des gaz de fission en présence de défauts est nécessaire afin d’améliorer la compréhension et la modélisation du comportement du combustible sous irradiation. La démarche mise en place dans ce travail a pour objectif d’étudier la diffusion thermique des gaz et de comprendre leur interaction avec les défauts d’irradiation. Elle repose sur la réalisation d’études à effets séparés couplant des irradiations/implantations aux ions à des techniques de caractérisation fines. La Spectroscopie d’Annihilation des Positons (SAP) complétée par la Microscopie Electronique en Transmission (MET)permet de caractériser les défauts (ponctuels et/ou sous forme d’amas) générés par l’irradiation et de suivre leur évolution en température. En parallèle, la modélisation des cinétiques de relâchement des gaz rares mesurées par désorption thermique couplée à la spectrométrie de masse, permet d’obtenir les coefficients de diffusion des gaz et de mettre en lumière les phénomènes de piégeage opérants. La synthèse de ces résultats expérimentaux nous amène à identifier les mécanismes de migration des gaz et à décrire leurs interactions avec les défauts d’irradiation. / During in-reactor irradiation, fission gases such as xenon or krypton are produced. In the fuel, those gases diffuse and precipitate to form bubbles. In addition, fission reactions induce small defects(vacancies and interstitials) and larger defects (cavities and dislocations) formation. Data acquire menton fission gases migration considering radiation-induced defects is thus necessary to better understand and improve models of in-pile fuel behavior. The experimental approach developed in this work aims to study thermal diffusion of rare gases and to understand their interaction with radiation-induced defects.To do this, separated effect studies were performed coupling ion implantations/irradiations to fine characterization techniques. Positron Annihilation Spectroscopy (PAS) coupled to Transmission Electron Microscopy (TEM) observations allows for defects characterizations (vacancies and/or cavities induced by ion implantation) and for their thermal behavior study. On the other hand, gas release measurements are performed by thermal desorption spectrometry. Simulation of gas kinetic release allows to determine diffusion coefficients and to lighten trapping mechanisms. The synthesis of those various experimental results brings us to identify gas migration mechanism and to describe their interaction with radiation-induced defects.
8

Etude des interactions entre les défauts lacunaires et les solutés Y,O, Ti pour mieux comprendre leur rôle dans la formation des nanoparticules d'oxydes dans les aciers ODS / Experimental study of the interaction of vacancy defects with Y, O and Ti solutes to better understand their roles in the nanoparticles formation in ODS steels

Asplet, William 13 December 2018 (has links)
Cette thèse est dédiée à l’étude des interactions entre les défauts lacunaires et les solutés (Y, Ti, O) pour mieux comprendre la formation des nanoparticules d’oxyde dans les aciers ODS (Oxide Dispersion Strengthened). Ces aciers sont envisagés comme matériau de structure dans la prochaine génération de réacteurs nucléaires fission et fusion. Leurs bonnes propriétés reposent essentiellement sur une répartition homogène de nanoparticules (YxTiyOz) de très faible taille. Cependant, l’obtention de cette répartition n’est pas encore maitrisée et le mécanisme de formation de ces nanoparticules n’est pas encore bien défini. Des modèles théoriques montrent que la présence de lacunes pendant l’étape de broyage pourrait impacter la formation de ces nanoparticules. Cette étude fait suite à la thèse de C. He et apporte de nouveaux résultats et de nouvelles interprétations et conclusions. Des implantations avec des ions Y, Ti, O ont été réalisées afin de simuler l’étape de broyage de ces aciers ODS. Elles ont permis d’introduire des défauts et les solutés désirés dans la matrice de fer α. Nous avons ensuite étudié les interactions entre les solutés et les défauts générés dans la matrice. La nature des défauts induits a été étudiée en fonction de l’ion implanté et de traitements thermiques après implantation par spectroscopie d’annihilation de positons (PAS) et corrélée avec les profils en profondeur des solutés obtenus par spectrométrie de masse des ions secondaires (SIMS). Les caractéristiques d’annihilation de certains défauts encore inconnues ont pu être déterminées. Les mesures SIMS ont montré que le titane ne migre pas entre 100 et 450°C et que l’oxygène présente un comportement complexe de migration et de piégeage dépendant de la température et de la microstructure des matériaux. Les résultats PAS montrent que les implantations ioniques conduisent à la formation de clusters lacunaires, de complexes lacunes-solutés et de dislocations dont la proportion change en fonction de la profondeur et de la nature de l’ion implanté. Les clusters de lacunes Vn et les dislocations sont détectés au-delà du pic d’implantation avec une fraction plus importante pour les dislocations indiquant que les défauts ont pu migrer pendant l’implantation. La proportion des complexes lacunes-solutés est maximale dans la zone d’arrêt des ions. Elle est en accord avec les énergies de liaison théoriques des complexes lacunes-soluté. La nature et la distribution des défauts formés évoluent en fonction de la température de recuit. Les clusters lacunaires Vn disparaissent entre RT et 300°C alors que les dislocations sont éliminées à partir de 400°C. Des phases oxydes sont détectées pour des recuits à 500 et 550°C en lien avec la contamination en oxygène. Des défauts dont la nature est non identifiée ont été mis en évidence pour des recuits réalisés entre 300 et 400°C dans les implantations O, Y et Y+O. / This PhD thesis is dedicated to the study of interaction between vacancies and Y, Ti,O solutes for a better understanding of formation of oxide nanoparticles in ODS steel (Oxide Dispersion Strengthened). These ODS steels are considered as structural material for the next generation of fission and fusion nuclear reactors. Their good properties are induced by the fine dispersion of low size oxide nanoparticles. However, obtaining this distribution is not mastered and atomic scale clustering is not yet defined. Furthermore, it was shown by theoretical models that the presence of vacancy during mechanical alloying could affect the formation of these nanoparticles. This study follows upon on a previous study made by C.He, and bring new results, new interpretation and conclusions. Some implantations with Y, Ti, O ions with several energy have been made in order to simulate the mechanical alloying step used for ODS steel fabrication. Theses irradiations have induced defects and solutes into the iron matrix. Then we characterized samples using positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry (SIMS). The nature of defects was studied according to nature of the implanted ion and the annealing temperature by PAS and correlated to depth profiles of solutes obtained by SIMS. Annihilation characteristics of some defects still unknown were able to be determined thanks to positron lifetime measurements. SIMS analysis showed that titanium doesn’t migrate for annealing experiments between 100°C and 450°C and that oxygen show a complex behavior of migration and trapping dependent on the microstructure of the material. PAS results show that ionic implantations produce vacancy clusters, dislocations and solutes-vacancies complex. Their proportion changes as a function of depth and nature of these irradiations. Vacancy clusters and dislocations are detected deeper than the implantation peak with a higher fraction for the dislocations indicating that the defects were able to migrate during implantations. The fraction of vacancy-solutes complexes is the highest in the ion stopping zone and is in a good agreement with the theoretical binding energy of vacancies-solutes complex. The nature and the distribution of the defects evolve according to the annealing temperature. Vacancy clusters disappear between RT and 300°C while the dislocations are eliminated from 400°C. Oxide phases are detected for annealing at 500 and 550°C in relation with the oxygen contamination during these annealings. Some defects which the nature is not yet identified were highlighted for annealing between 300 and 400°C for Y, O and Y+O irradiations

Page generated in 0.0489 seconds