• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effets de la température et de l'irradiation sur la mobilité du xénon dans UO$_2$ : étude profilométrique et microstructurale

Marchand, Benoît 21 December 2012 (has links) (PDF)
En France, l'énergie électrique est majoritairement produite (78 %) grâce au fonctionnement de 58 REP (Réacteurs à Eau Pressurisée). Lors du fonctionnement de ces réacteurs, de nombreux produits de fission (PF) sont générés dans le combustible qui est de l'UO2 enrichi à environ 4% en 235U. Parmi eux, il est important de connaître le comportement du xénon et du krypton, produits de fission gazeux qui sont abondamment produits (près de 15 % des produits de fission stables). De plus, de par leur nature chimique, ces deux gaz ont une très faible solubilité dans le combustible et vont donc avoir tendance à se regrouper sous forme de bulles (pour minimiser la tension de surface) pouvant ainsi engendrer un gonflement de la pastille d'UO2. Le gaz formé peut aussi être libéré hors de la pastille, entrainer une augmentation substantielle de la pression dans la gaine de combustible et ainsi limiter l'utilisation du combustible. Cependant, les mécanismes de migration, traditionnellement étudiés de manière indirecte en mesurant la quantité de gaz relâché après irradiation, ne sont pas encore totalement compris. Il est fréquemment supposé que la diffusion atomique est le seul mécanisme susceptible d'entrainer une migration du xénon. L'objectif de cette thèse est de mettre en évidence de manière directe les différents mécanismes gouvernant le comportement thermique et sous irradiation du xénon dans UO2. Pour cela, nous avons utilisé l'implantation ionique qui nous permet d'introduire du xénon dans des échantillons de dioxyde d'uranium. Cette implantation engendre un profil de concentration quasi-gaussien de xénon (variation de la concentration en fonction de la profondeur) dans les 300 premiers nanomètres de l'échantillon. Suite à différents traitements qui sont d'une part des recuits entre 1400°C et 1600°C afin d'étudier l'impact de la température et d'autre part des irradiations avec des ions afin de simuler l'impact des produits de fission dans le combustible, les profils de concentration ont été mesurés par microsonde ionique (SIMS). Bien que la faisabilité de la mesure du xénon ait été démontrée dans différents articles, aucun profil de concentration n'avait jusqu'à présent été présenté dans la littérature. Dans le dioxyde d'uranium, un traitement classique des données SIMS n'est pas adapté. Un nouveau logiciel de traitements des données a donc été développé au cours de cette thèse qui permet l'obtention de profils reproductibles. Aucune diffusion du xénon n'a pu être observée lors des recuits à 1400°C et à 1600°C indiquant une absence de mobilité du xénon dans ces conditions. Des études complémentaires de caractérisation de défauts de type lacunaire et de bulles de xénon ont été effectuées par spectroscopie d'annihilation de positrons (PAS) et par microscopie électronique par transmission (MET). Elles montrent des modifications importantes de la microstructure d'UO2 induites par la formation de bulles à 1400°C et 1600°C pouvant expliquer l'absence de diffusion observée. Les études sous irradiation à fort (dE/dx) électronique ont montré une diffusion et un transport du xénon dépendants des températures d'irradiation. Pour les irradiations à 600 et 1000°C, les caractérisations de la microstructure, mettent en évidence la formation de bulles de xénon alignées avec la direction du faisceau d'ions incidents. A contrario, les chocs balistiques (irradiation avec des ions Argon de 800keV) n'ont causé aucune modification significative des profils quelle que soit la température d'irradiation.
2

Influence des gaz de fission sur l'état mécanique des combustibles oxydes irradiés / Influence of fission gases on the mechanical state of irradiated oxide fuels

Cagna, Céline 12 October 2016 (has links)
L'irradiation génère dans le combustible des gaz de fission, principalement xénon et krypton, présents sous forme dissoute et sous forme de bulles. L’objectif de ces travaux de recherche est de contribuer à la méthodologie de caractérisation de ces bulles et d’apporter ainsi des éléments de validation de référence pour la modélisation. Deux approches sont étudiées. Sur la base d’une méthode existante de détermination de la pression moyenne des bulles par le couplage de trois techniques : EPMA, MEB et SIMS, une nouvelle méthode complémentaire a été mise au point sur une bulle isolée sous la surface. La méthodologie consiste à repérer une bulle fermée et remplie en xénon par des cartographies microsonde et images MEB et de mesurer la quantité de gaz présent par SIMS. Une observation 3D, par abrasion FIB, donne une estimation du volume de la bulle et permet ainsi de calculer la pression de gaz. A 300 K, une estimation des niveaux de pression est obtenue, sur des bulles intragranulaires, micrométriques du centre de pastilles de combustibles irradiés. En parallèle, une méthode de mesure du champ de déformation élastique engendré par la présence de bulles pressurisées, est développée par HR-EBSD. Un modèle par éléments finis permet d’évaluer les niveaux de déformation autour des bulles de gaz de fission et met en évidence que seules les bulles nanométriques engendrent des déformations élastiques mesurables par cette technique. Au préalable, la méthode a été calibrée à partir d’essais de flexion quatre points sur du silicium monocristallin et sur des céramiques implantées en xénon, permettant une exploitation étendue de la méthode par la prise en compte de déformations libres. Cette étape définit les paramètres d’acquisition et de traitement optimum pour son application sur combustible irradié. La mesure de déformation élastique par HR-EBSD sur combustible irradié reste une mesure relative qui demandera davantage de réflexion quant au choix de la référence. / The irradiation generates in the fuel, fission gases, mainly xenon and krypton, present in dissolved form and in the form of bubbles. This research objective is to contribute to the fission gas bubbles methodology of characterization and thus to bring elements of reference for the models validation. Two approaches are studied. Based on an existing method of bubbles average pressure evaluation by the coupling of three techniques: EPMA, SEM and SIMS, a new complementary method has been developed on an isolated bubble under the surface. The methodology consists in identifying a closed and filled bubble with xenon by microprobe mapping and SEM images and to measure the amount of present gas by SIMS. 3D observation by FIB abrasion provides an estimation of the bubble volume and thus allows to calculate the bubble pressure. At 300 K, an estimation of the pressure levels is obtained on intragranular micrometric bubbles from the fuel pellets center area. Meanwhile, a method of elastic field strain measurement, produced by the presence of pressurized bubbles, is developed by HR-EBSD. A finite element model evaluates the levels of strain around the fission gas bubbles and shows that only nanometric bubbles generate measurable elastic strain by this technique. First, the method was calibrated from four points bending tests on monocrystalline silicon and ceramics implanted with xenon, allowing to take into account free strains. This step defines the parameters of acquisition and optimum treatment for its application on irradiated fuels. Measurement of elastic strain with HR-EBSD on irradiated fuel is a relative measure that will require further consideration in the choice of the reference.
3

Etude de la fracturation mécanique de la structure à haut taux de combustion des combustibles irradiés (RIM) en traitement thermique / Mechanical fracture study of nuclear fuel high burn-up structure (HBS or RIM) during annealing test

Marcet, Mathieu 07 December 2010 (has links)
Les céramiques utilisées dans les Réacteurs à Eau Presurisée sont constituées de dioxyde d'uranium. Irradiée à fort taux de combustion en réacteur, elles présentent en périphérie de pastille une microstructure particulière, dénommée RIM, avec des pores de l'ordre du micromètre fortement pressurisés en gaz de fission. Lors des traitements thermiques (TT) simulant des situations incidentielles ou accidentelles de réacteur, un relâchement important de la zone de RIM est observé. Nous avons considéré que le mécanisme de relâchement du gaz contenu dans les bulles pressurisées est la fracturation mécanique des joints de grains du RIM. Puis nous avons comparé les différents types de sollicitations mécaniques auxquelles sont soumis un joint de grain à la contrainte à rupture de l'oxyde. La première sollicitation est induite par les bulles de gaz surpressurisées du RIM ; elle impose un champ de contrainte à un niveau microscopique i.e. à l'échelle d'une bulle de gaz et son environnement local. La seconde sollicitation est générée par l'interaction mécanique entre la pastille et la gaine. cette sollicitation impose un champ de contrainte à un niveau macroscopique i.e. à l'échelle de la zone de RIM et de son environnement global. La dernière sollicitation résulte de la déformation due à l'évolution structurale du RIM en TT. Les résultats expérimentaux de la thèse montrent que les champs de contraintes microscopiques et macroscopiques n'expliquent pas la fracturation des joints de grains du RIM en TT. Les sollicitations induites par l'évolution structurale du RIM en fonction de la température est un mécanisme possible pour expliquer le comportement mécanique global du RIM en TT. / The ceramics used in Power Water Reactors ar made of uranium dioxide. Irradiatd at high Burn-up, they present a characteristic zone in periphery called High Burn-Up Structure or RIM zone with micrometer pores containing over-pressurizzed gas bubbles. Annealing texts simulating incidental or accidental reactor situations, a strong release of the RIM zone is observed. We have considered that the fission gas release mechanism is the mechanical fracture of the RIM grain boundaries. The we have compared the diffrerent types of mechanical stress applied to a grain boundary with the fracture stress of the oxide. The first stress is due to RIM over-pressurized gas bubbles, these bubbles apply a stress field determined at a microscopic level i.e. at the gas bubbles scale and its local environment. The second stress is generated by the Pellet Cladding Mechanical Interaction (PCMI). This stress applies a stress field on a microscopic scale i.e. at the RIM zone and its overall environent. The last stress is occured by a strain due to the RIM structural evolution during annealing test. The experimental results show that microscopic and macroscopic stress fields to do not explain the RIM grain boundary fracture during annealing test. The stresses induced by the RIM structural evolution as a function of the temperature is a possible mechanism to explain the overal mechanical behavior of the RIM zone during annealing test.
4

Etude du relâchement de gaz de fission entrer 600°C et 800°C lors de transitoire thermique sur combustible irradié / Fission gas release mechanism between 600°C and 800°C during thermal transient on irradiated fuel

Brindelle, Guillaume 06 November 2017 (has links)
Les travaux menés au cours de cette thèse s’inscrivent dans le cadre général de l’évaluation du terme source (relâchement de gaz de fission) en situation incidentelle de type APRP (Accident de Perte de Réfrigérant Primaire). Lors de tels transitoires thermiques, le relâchement de gaz de fission se fait par bouffées successives : une première entre 600°C et 800°C et la seconde à environ 1100°C. Ces travaux de thèse s’intéressent à cette première. Il semblerait que la bouffée à 600-800°C proviendrait du centre de la pastille combustible. L’objectif de cette thèse est d’étudier les mécanismes à l’origine de cette bouffée.Afin de mieux comprendre ces mécanismes, une étude a été menée sur l’ensemble des traitements thermiques réalisés dans la plateforme expérimentale MERARG. L’analyse de cette base de données a révélé 2 points importants : 1) Dans les conditions expérimentales de MERARG, aucune fagmentation significative du combustible n’est observée à des températures inférieures à 1000°C. 2) Le niveau de relâchement de gaz de fission entre 600°C et 800°C semble augmenter avec le temps d’entreposage du combustible.Le premier point indique que la fragmentation du combustible n’est pas une condition nécessaire au relâchement de gaz de fission dans cette gamme de température : d’autres mécanismes peuvent être à l’origine de ce relâchement. Durant l’entreposage, le combustible est soumis principalement à l’auto-irradiation α. Celle-ci a pour effet de créer des défauts dans une zone qui n’en contenait initialement pas. Nous avons démontré que la cinétique du relâchement de gaz de fission entre 600°C et 800°C est concomitante avec la cinétique de recuit de défauts d’autoirradiation α. De plus, une cinétique auto-catalytique de germination-croissance de nano-clusters de gaz a été développée et confrontée aux résultats expérimentaux. En outre, une étude sur matériaux simulants démontre que, sur des pastilles d’UO2 frittées et implantées en xénon, une irradiation en régime électronique a pour effet d’accroitre le relâchement entre 600°C et 800°C. La littérature décrit la remise en solution des bulles de gaz de fission sous l’effet d’une irradiation de ce type. De plus, lors de leur remise en solution, les gaz de fission s’insèrent dans les défauts de la structure cristalline. Lors d’un traitement thermique, le recuit des défauts entraine la mobilité des atomes de gaz de fission insérés de ces mêmes défauts. Par germination-croissance, les paires gaz/défauts rejoignent un chemin de sortie, les gaz de fission sont donc relâchés.Ce travail a donc permis de retenir l’hypothèse d’un mécanisme de relâchement de gaz de fission entre 600°C et 800°C par recuit de défauts sans fragmentation significative du combustible. / The subject of this thesis concerns the evaluation of the source term (fission gas release) in incidental situations of type LOCA (Loss of Coolant Accident) of nuclear fuels. During such thermal transients, the fission gas release is characterized by successive bursts : the first one occurring between 600 and 800°C, and a second one at about 1100°C. This work is about the first burst release. It appear that this one come from the centre of the fuel pellet. The aim of this thesis is to study the mechanisms responsible for the fission gas release between 600°C and 800°C.To this purpose, we collected more than 200 results of thermal treatments carried out using the experimental platform MERARG. The analysis of this database reveals two important results : under the experimental conditions of MERARG, no significant fragmentation of the fuel was observed at temperatures below 1000°C ; the amount of fission gas release between 600°C and 800°C appears to increase with fuel storage time.The first result suggests the fragmentation of the fuel is not a necessary condition for the release of fission gas in this temperature range. Other mechanisms may then be responsible for this gas release. During its storage, the fuel undergoes α particle self-irradiation. We demonstrate that the kinetics of fission gas release between 600°C and 800°C is simultaneous with the kinetics of the annealing of self-irradiation defects at this same temperature. The mechanism involves an autocatalytic process leading to a kinetic of fast germination-growth of gas nano-clusters. This model perfectly explains the experimental results in the database. To confirm this mechanism, a study on surrogate materials demonstrates that, in UO2 pellets sintered and implanted by Xe, irradiations in the electronic regime actually promote the release of implanted Xe at those temperatures. The re-dissolution of the fission gas bubbles by this kind of irradiation is consistent with observations in other contexts. Those conclusions allow to extend the mechanism for release to irradiated fuel.During the storage of the fuel, α self-irradiation promotes the re-dissolution of the trapped gas. The consequences of this effect are particularly important in the region close to the grain boundaries, where the concentration of defects is also larger. The irradiation mechanism increases the fraction of fission gas available for release, depleting the amount of gas initially trapped in bubbles. The gas in solution can effectively be carried by crystal defects, largely available in the irradiated fuel and whose migration at 600-800°C induces the mobility of the fission gas. When they reach an outlet path, the gas can be released from the pellet in a way consistent with the model of autocatalytic germination-growth we developed to explain the macroscopic results of the database.In conclusion, this work supports the hypothesis of a mechanism of fission gas release in the range 600-800°C via a mechanism involving the migration and annealing of defects without significant fragmentation of the fuel.
5

Étude par Dynamique d’Amas de l’influence des défauts d’irradiation sur la migration des gaz de fission dans le dioxyde d’uranium / A Cluster Dynamics study of fission gases in uranium dioxide

Skorek, Richard 15 October 2013 (has links)
Le dioxyde d'uranium UO2 est le combustible nucléaire standard des réacteurs à eau pressurisée. Durant le fonctionnement du réacteur, la fission de l'uranium produit une grande variété de produits de fission, parmi lesquelles des gaz de fission, principalement le xénon et le krypton. En raison de leurs propriétés, ces gaz peuvent fortement impacter le comportement du combustible, et c’est pourquoi la maitrise de leur comportement est un enjeu industriel majeur et que de nombreux efforts de modélisation y sont consacrés depuis plusieurs dizaines d’années.Cette étude se base sur l’idée que la capacité prédictive des modèles de gaz est limitée par une description insuffisante des défauts ponctuels et de leurs interactions avec les atomes de gaz. Dans ce contexte, on applique à l’UO2 la Dynamique d’Amas, technique largement utilisée notamment pour décrire l’évolution de la concentration des défauts ponctuels et agrégés dans les métaux sous irradiation. Ce travail met plus particulièrement l’accent sur l’interprétation d’expériences de diffusion de gaz rares implantés dans l’UO2, en faisant appel au maximum à des résultats de modélisation atomistique pour évaluer les paramètres du modèle. / During in-pile irradiation of nuclear fuels a lot of rare gases are produced, mainly xenon and krypton. The behaviour of these highly insoluble fission gases may lead to an additional load of the cladding, which may have detrimental safety consequences. For these reasons, fission gas behaviour (diffusion and clustering) has been extensively studied for years.In this work, we present an application of Cluster Dynamics to address the behaviour of fission gases in UO2 which simultaneously describes changes in rare gas atom and point defect concentrations in addition to the bubble size distribution. This technique, applied to Kr implanted and annealed samples, yields a precise interpretation of the release curves and helps justifying the estimation of the Kr diffusion coefficient, which is a data very difficult to obtain due to the insolubility of the gas.
6

Etude par calcul de structure électronique des dioxydes d'uranium et de cérium contenant des défauts et des impuretés / Theoretical study using electronic structure calculations of uranium and cerium dioxides containing defects and impurities

Shi, Lei 04 November 2016 (has links)
Le dioxyde d'uranium (UO2) est le combustible nucléaire le plus largement utilisé dans les réacteurs nucléaires à travers le monde. En conditions d’exploitation, UO2 est soumis au flux de neutrons et subit des réactions en chaîne de fission nucléaire, ce qui crée un grand nombre de produits de fission et des défauts ponctuels. L'étude du comportement des produits de fission et des défauts ponctuels est importante pour comprendre les propriétés du combustible sous irradiation. Nous effectuons des calculs de structure électronique basés sur la théorie de la fonctionnelle de la densité (DFT) pour modéliser les dégâts d’irradiation à l'échelle atomique. La méthode DFT+U est utilisé pour décrire les fortes corrélations des électron 4f du cérium et des électrons 5f de l’uranium dans les matériaux étudiés (UO2, CeO2 et (U, Ce)O2). (U, Ce)O2 est étudié car il est considéré comme un matériau modèle peu radioactif d'oxydes d’actinides mixtes comme (U, Pu)O2 qui est le combustible d'oxydes mixtes (MOX) utilisé dans les réacteurs à eau légère et les réacteurs à neutrons rapides. Le dioxyde de cérium (CeO2) est étudié pour des données de référence de (U, Ce)O2. Nous effectuons une étude DFT+U des défauts ponctuels et des produits de fission gazeux (Xe et Kr) dans CeO2 et comparons nos résultats à ceux déjà existants pour l’UO2. Nous étudions les propriétés en volume, ainsi que le comportement des défauts pour (U, Ce)O2, et comparons nos résultats à ceux de (U, Pu)O2. En outre, pour l'étude des défauts dans UO2, des améliorations méthodologiques sont explorées considérant l'effet de couplage spin-orbite et l’effet de taille finie de la supercellule de modélisation. / Uranium dioxide (UO2) is the most widely used nuclear fuel in existing nuclear reactors around the world. While in service for energy supply, UO2 is submitted to the neutron flux and undergoes nuclear fission chain reactions, which create large number of fission products and point defects. The study of the behavior of the fission products and point defects is important to understand the fuel properties under irradiation. We conduct electronic structure calculations based on the density functional theory (DFT) to model this radiation damage at the atomic scale. The DFT+U method is used to describe the strong correlation of the 4f electrons of cerium and 5f electrons of uranium in the materials studied (UO2, CeO2 and (U, Ce)O2). (U, Ce)O2 is studied because it is considered as a low radioactive model material of mixed actinide oxides such as the MOX fuel (U, Pu)O2 used in light water reactors and fast neutron reactors. Cerium dioxide (CeO2) is studied to provide reference data of (U, Ce)O2. We perform a DFT+U study of point defects and gaseous fission products (Xe and Kr) in CeO2 and compare our results to the existing ones of UO2We study the bulk properties as well as the behavior of defects for (U, Ce)O2, and compare our results to the ones of (U, Pu)O2. Furthermore, for the study of defects in UO2, methodological improvements are explored considering the spin-orbit coupling effect and the finite-size effect of the simulation supercell.
7

Development of acoustic sensors for the extension of measurements to high temperature in the experimental reactors / Développement de capteurs ultrasonores pour l’extension des mesures acoustiques aux hautes températures dans les réacteurs expérimentaux

Gatsa, Oleksandr 30 November 2018 (has links)
Ce travail de thèse porte sur l’étude et la réalisation d'une nouvelle génération de capteurs ultrasonore dédiés à la caractérisation des gaz de fission. Plus généralement, ces études concernent le développement de l’instrumentation du réacteur d’essai des matériaux Jules Horowitz (RJH), visant entre autre à effectuer le contrôle in situ de la composition du gaz libéré afin d’optimiser la durée de vie du combustible et le taux de combustion. La température de fonctionnement de ce nouveau réacteur devant se situer dans la plage entre 200 °C à 400 °C, la principale problématique concerne donc le développement d’un matériau piézoélectrique, capable de fonctionner dans la plage de température requise, et son intégration à un dispositif de détection.Nous proposons l’utilisation du sodium titanate de bismuth (NBT) développé par la méthode de la sérigraphie. Dans le but d'optimiser les conditions de fabrication des matériaux, plusieurs versions de matériaux piézoélectriques ont été produites au cours de cette thèse. Chacun des matériaux a été caractérisé (paramètres morphologiques, chimiques, électriques, diélectriques, piézoélectriques et électromécaniques) et des tests en fonction de la température ont été conduits. Après avoir démontré une bonne répétabilité dans la production du matériau, le protocole de fabrication des capteurs a été déterminé et un prototype de capteur ultrasonore a été réalisé.Ces capteurs ont été fabriqués par dépôt du matériau actif sur un substrat d'alumine. Après caractérisation des propriétés des capteurs, des essais ont montré une sensibilité acoustique importante à température ambiante. De plus, la possibilité d'une détection de gaz sur une gamme de pression de 50 à 70 bars a été démontrée par l'intégration d’un capteur dans une enceinte. Pour vérifier la possibilité d'application du capteur à la détection de gaz dans des environnements hostiles (haute température), un modèle théorique basé sur les propriétés électromécaniques et les équations d’adaptation d’impédance a été introduit. Il a été démontré théoriquement que le capteur est capable d'effectuer des mesures de gaz de la température ambiante jusqu’à 350 °C. / This Ph.D. thesis is dedicated to the development of a new generation of ultrasonic sensors devoted to fission gas characterization. More generally, these studies concern the development of instrumentation for the Jules Horowitz material testing reactor (JHR) aiming to perform in-situ control of the released gas composition for optimization of burn-up rate and fuel rod lifetime. The operation temperature of this new reactor will be in the range of 200 °C - 400 °C. Hence, the main problem concerns the development of piezoelectric material, able to operate in the required temperature range, and its integration with a sensor device.To resolve this problem, we propose to use the sodium bismuth titanate (NBT) ceramic material developed by the screen-printing technique. Several versions of piezoelectric materials were produced during this research, with the purpose of optimizing material manufacturing conditions Each material was characterized (morphological, chemical, electric, dielectric, piezoelectric and electromechanical parameters) and “tests as a function of temperature” were carried out. After demonstrating repeatability in material fabrication, the protocol for NBT sensor production was determined and a prototype of the ultrasonic sensor was fabricated.The sensor was fabricated by deposition of an active material onto an alumina substrate. After characterization of sensor properties, acoustic tests showed a high sensitivity of measurements at ambient temperature (25 °C). Furthermore, by integration of sensors into a pressurized enclosure the possibility of gas detection in the range from 50 to 70 bars was demonstrated. To verify the sensor’s applicability to gas detection under harsh temperature environment, a theoretical model based on electromechanical properties and impedance matching equations was introduced. It was theoretically demonstrated that the sensor is able to perform gas measurements from ambient temperature up to 350 °C.
8

Etude du comportement thermique des gaz de fission dans l'UO₂ en présence de défauts d'irradiation / Thermal behavior of fission gases in UO₂ considering radiation-induced defects

Gérardin, Marie 19 December 2018 (has links)
Lors de l’irradiation en réacteur, des gaz de fission tels que le xénon et le krypton sont produits. Ces gaz diffusent dans le combustible, mais peuvent également précipiter sous forme de bulles. En outre,les réactions de fission conduisent à la formation de défauts ponctuels (lacunes ou interstitiels) et sous forme d’amas (dislocations ou cavités). L’obtention de données expérimentales sur la migration des gaz de fission en présence de défauts est nécessaire afin d’améliorer la compréhension et la modélisation du comportement du combustible sous irradiation. La démarche mise en place dans ce travail a pour objectif d’étudier la diffusion thermique des gaz et de comprendre leur interaction avec les défauts d’irradiation. Elle repose sur la réalisation d’études à effets séparés couplant des irradiations/implantations aux ions à des techniques de caractérisation fines. La Spectroscopie d’Annihilation des Positons (SAP) complétée par la Microscopie Electronique en Transmission (MET)permet de caractériser les défauts (ponctuels et/ou sous forme d’amas) générés par l’irradiation et de suivre leur évolution en température. En parallèle, la modélisation des cinétiques de relâchement des gaz rares mesurées par désorption thermique couplée à la spectrométrie de masse, permet d’obtenir les coefficients de diffusion des gaz et de mettre en lumière les phénomènes de piégeage opérants. La synthèse de ces résultats expérimentaux nous amène à identifier les mécanismes de migration des gaz et à décrire leurs interactions avec les défauts d’irradiation. / During in-reactor irradiation, fission gases such as xenon or krypton are produced. In the fuel, those gases diffuse and precipitate to form bubbles. In addition, fission reactions induce small defects(vacancies and interstitials) and larger defects (cavities and dislocations) formation. Data acquire menton fission gases migration considering radiation-induced defects is thus necessary to better understand and improve models of in-pile fuel behavior. The experimental approach developed in this work aims to study thermal diffusion of rare gases and to understand their interaction with radiation-induced defects.To do this, separated effect studies were performed coupling ion implantations/irradiations to fine characterization techniques. Positron Annihilation Spectroscopy (PAS) coupled to Transmission Electron Microscopy (TEM) observations allows for defects characterizations (vacancies and/or cavities induced by ion implantation) and for their thermal behavior study. On the other hand, gas release measurements are performed by thermal desorption spectrometry. Simulation of gas kinetic release allows to determine diffusion coefficients and to lighten trapping mechanisms. The synthesis of those various experimental results brings us to identify gas migration mechanism and to describe their interaction with radiation-induced defects.
9

Modélisation des modifications structurales, électroniques et thermodynamiques induites par les défauts ponctuels dans les oxydes mixtes à base d'actinides (U,Pu)O2 / First-principles modeling of the structural, electronic and thermodynamic modifications induced by point defects in actinide mixed oxides (U,Pu)O2

Cheik Njifon, Ibrahim 06 November 2018 (has links)
(U,Pu)O2 (aussi appelé MOX) est actuellement utilisé comme combustible dans les réacteurs nucléaires à eau pressurisée (REP) avec une teneur massique en Pu d’environ 10 %. Il est également envisagé comme combustible de référence pour les réacteurs à neutrons rapides à caloporteur sodium, avec une teneur massique en Pu d’environ 25 %. En conditions opérationnelles, (U,Pu)O2 est soumis à des réactions de fission qui génèrent une grande quantité de défauts et de produits de fission. Par migration, ces défauts et produits de fission gazeux peuvent s'agréger en nano-cavités, dislocations et bulles de gaz, conduisant à une modification de la microstructure. Une meilleure description du comportement du combustible à l’échelle atomique, notamment des mécanismes élémentaires impliqués dans la diffusion des défauts et des produits de fission, est donc nécessaire pour affiner les modèles utilisés dans les codes de performance des combustibles. Pour l’étude des propriétés de (U,Pu)O2, nous avons effectué des calculs de structure électronique basés sur la méthode DFT+U combinée au contrôle des matrices d’occupation des orbitales corrélées. Des minimisations d’énergie ainsi que la dynamique moléculaire ab initio ont été utilisées. Nous avons étudié dans un premier temps les propriétés du cristal de (U,Pu)O2 pour différentes teneurs en Pu. Nous avons ensuite étudié la stabilité des défauts ponctuels ainsi que les modifications structurales et électroniques induites par ces défauts ponctuels dans (U,Pu)O2 et (U,Ce)O2, matériau utilisé comme simulant de (U,Pu)O2. Enfin, nous avons étudié le piégeage et la solubilité des gaz de fission (Kr, Xe) et de l’hélium dans la matrice de (U,Pu)O2 / (U,Pu)O2 (commonly called MOX) is currently used as nuclear fuel in pressurized water reactors with a Pu content of around 10 wt.%, and is envisaged as the reference fuel in Generation IV sodium fast reactors (SFR) with a Pu content of around 25 wt.%. Under operation, (U,Pu)O2 is submitted to fission reactions which generate a large quantity and variety of point defects, as well as fission products. By migrating, point defects and gaseous fission products can aggregate into nano-voids, dislocations and fission gas bubbles, which lead to the modification of the fuel microstructure. Therefore, a better description of the fuel behaviour at the atomic scale, and especially of the elementary mechanisms involved in the diffusion of point defects and fission products, is necessary to refine the models used in the fuel performance codes used to simulate the behaviour of fuels at the macroscopic scale. We use electronic structure calculations based on the DFT+U method combined with the occupation matrix control scheme (OMC) to investigate (U,Pu)O2 properties for various Pu contents. Static energy minimizations and ab initio molecular dynamics were used. We have first determined bulk structural, electronic and thermodynamics properties of (U,Pu)O2. We then studied the stability of point defects in (U,Pu)O2 and (U,Ce)O2, as well as the structural and electronic modifications induced by these point defects, in (U,Pu)O2 and the common experimental surrogate (U,Ce)O2. Finally, the fission gas (Kr and Xe) and helium (He) trapping and solubility in (U,Pu)O2 matrix are investigated

Page generated in 0.0939 seconds