• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ionospheric Scintillation Prediction, Modeling, and Observation Techniques for the August 2017 Solar Eclipse

Brosie, Kayla Nicole 16 August 2017 (has links)
A full solar eclipse is going to be visible from a range of states in the contiguous United States on August 21, 2017. Since the atmosphere of the Earth is charged by the sun, the blocking of the sunlight by the moon may cause short term changes to the atmosphere, such as density and temperature alterations. There are many ways to measure these changes, one of these being ionospheric scintillation. Ionospheric scintillation is rapid amplitude and phase fluctuations of signals passing through the ionosphere caused by electron density irregularities in the ionosphere. At mid-latitudes, scintillation is not as common of an occurrence as it is in equatorial or high-altitude regions. One of the theories that this paper looks into is the possibility of the solar eclipse producing an instability in the ionosphere that will cause the mid-latitude region to experience scintillations that would not normally be present. Instabilities that could produce scintillation are reviewed and altered further to model similar conditions to those that might occur during the solar eclipse. From this, the satellites that are being used are discuses, as is hardware and software tools were developed to record the scintillation measurements. Although this work was accomplished before the eclipse occurred, measurement tools were developed and verified along with generating a model that predicted if the solar eclipse will produce an instability large enough to cause scintillation for high frequency satellite downlinks. / Master of Science
2

Dynamics of Equatorial Spread <i>F</i> Using Ground-Based Optical and Radar Measurements

Chapagain, Narayan P. 01 May 2011 (has links)
The Earth's equatorial ionosphere most often shows the occurrence of large plasma density and velocity fluctuations with a broad range of scale sizes and amplitudes. These night time ionospheric irregularities in the F-region are commonly referred to as equatorial spread F (ESF) or plasma bubbles (EPBs). This dissertation focuses on analysis of ground-based optical and radar measurements to investigate the development and dynamics of ESF, which can significantly disrupt radio communication and GPS navigation systems. OI (630.0 nm) airglow image data were obtained by the Utah State University all-sky CCD camera, primarily during the equinox period, from three different longitudinal sectors under similar solar flux conditions: Christmas Island in the Central Pacific Ocean, Ascension Island in South Atlantic, and Brasilia and Cariri in Brazil. Well-defined magnetic field-aligned depletions were observed from each of these sites enabling detailed measurements of their morphology and dynamics. These data have also been used to investigate day-to-day and longitudinal variations in the evolution and distribution of the plasma bubbles, and their nocturnal zonal drift velocities. In particular, comparative optical measurements at different longitudinal sectors illustrated interesting findings. During the post midnight period, the data from Christmas Island consistently showed nearly constant eastward bubble velocity at a much higher value (~80 m/s) than expected, while data from Ascension Island exhibited a most unusual shear motion of the bubble structure, up to 55 m/s, on one occasion with westward drift at low latitude and eastward at higher latitudes, evident within the field of view of the camera. In addition, long-term radar observations during 1996-2006 from Jicamarca, Peru have been used to study the climatology of post-sunset ESF irregularities. Results showed that the spread F onset times did not change much with solar flux and that their onset heights increased linearly from solar minimum to solar maximum. On average, radar plume onset occurred earlier with increasing solar flux, and plume onset and peak altitudes increased with solar activity. The F-region upward drift velocities that precede spread F onset increased from solar minimum to solar maximum, and were approximately proportional to the maximum prereversal drift peak velocities.

Page generated in 0.099 seconds