• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ionospheric Scintillation Prediction, Modeling, and Observation Techniques for the August 2017 Solar Eclipse

Brosie, Kayla Nicole 16 August 2017 (has links)
A full solar eclipse is going to be visible from a range of states in the contiguous United States on August 21, 2017. Since the atmosphere of the Earth is charged by the sun, the blocking of the sunlight by the moon may cause short term changes to the atmosphere, such as density and temperature alterations. There are many ways to measure these changes, one of these being ionospheric scintillation. Ionospheric scintillation is rapid amplitude and phase fluctuations of signals passing through the ionosphere caused by electron density irregularities in the ionosphere. At mid-latitudes, scintillation is not as common of an occurrence as it is in equatorial or high-altitude regions. One of the theories that this paper looks into is the possibility of the solar eclipse producing an instability in the ionosphere that will cause the mid-latitude region to experience scintillations that would not normally be present. Instabilities that could produce scintillation are reviewed and altered further to model similar conditions to those that might occur during the solar eclipse. From this, the satellites that are being used are discuses, as is hardware and software tools were developed to record the scintillation measurements. Although this work was accomplished before the eclipse occurred, measurement tools were developed and verified along with generating a model that predicted if the solar eclipse will produce an instability large enough to cause scintillation for high frequency satellite downlinks. / Master of Science

Page generated in 0.158 seconds