1 |
Interaction of carbon dioxide with complexes of the platinum group metalsBeaman, M. J. January 1984 (has links)
No description available.
|
2 |
Investigation of carrier transport in organic optoelectronic devices and iridium complex based phosphorescent light emitting devicesJhan, Yi-Pin 13 August 2012 (has links)
In this research, the contents are divided into two sections. In the first section, we investigated carrier transport behavior of organic optoelectronic devices by using space charge limited current(SCLC) method. Firstly, we fabricated a hole-only device (ITO/Spiro-MeOTAD/Al) for Sprio-MeOTAD and the current density¡V voltage(J-V) characteristics of the device was measured. The J-V characteristics of the device do not match with SCLCs very well at high voltage since the number of hole injection was not enough to achieve SCLCs condition. To enhance the injection of hole carrier into the organic layer, a MoO3 buffer layer was inserted between ITO electrode and organic layer. The current density in device with MoO3 buffer layer achieved 5 times enhancement, indicating that the concentration of hole in MoO3 device is increment. Hence, we succeeded in making the J-V characteristics of the hole-only device to match with SCLCs well at high voltage, and the hole mobility of Sprio-MeOTAD estimated by SCLCs was 1.44¡Ñ10-4cm2/Vs. Li salt was also doped into Sprio-MeOTAD as an n-type dopant. We found that Li salt could form hole-traps in Sprio-MeOTAD, which reduced hole carriers in Spiro-MeOTAD. The current density of the device was decreased, and the device could not achieve SCLCs condition at high voltage.
In the second section, we use two novel iridium(Ir) complexes to fabricate blue-green emitting devices by solution process. First, we obtained optimum concentration of phosphorescent emitters by controlling of the dopants concentration. Then, we adjusted the thickness of the electron injection layer, hole injection layer, and emission layer to design more suitable device structure. Finally, we succeeded in fabricating blue-green light emitting devices. The maxima luminescence was 37.7cd/m2 and maxima current efficiency was 1.68 cd/A in the Ir complex based devices.
|
3 |
Material and device design for organic optoelectronicsLevell, Jack William January 2011 (has links)
This thesis describes investigations into the photophysical properties of luminescent materials and their application in optoelectronic devices such as light emitting diodes and photodetectors. The materials used were all solution processable because of the interest in low cost processing of organics. I have investigated the photophysics of 1,4,5,8,9,12-hexamethyltriphenylene, a triphenylene derivative which has its luminescence enhanced by the addition of methyl groups. These groups change the planar shape of the triphenylene molecule into a twisted one, changing the symmetry of the molecule and increasing its dipole moment in absorption and emission by ~4 fold. This increased its rate of radiative deexcitation by ~20 times. In addition, the twisted shape of the molecule prevents intermolecular interactions and concentration effects from affecting the luminescence. This results in an efficient solid-state photoluminescence quantum yield of 31%. This thesis also includes an investigation into phosphorescent polymer dendrimers, designed to have suitable viscosities in solution for inkjet printed OLED applications. A photophysical study of the intra-chain aggregation effects on the luminescence was undertaken in both homopolymers and copolymers with high energy gap spacer units. Using double dendrons to increase the steric protection of the luminescent cores, the best homopolymers achieved 12.1% external quantum efficiency (39.3 cd/A) at 100 cd/m² brightness and the best co-polymer achieved 14.7% EQE (48.3 cd/A) at 100 cd/m². This compares favourably with 11.8% EQE for the best phosphorescent polymer and 16% for the best solution processed dendrimer OLED previously reported. Finally I have applied a solution processed enhancement layer to silicon photodiodes to enhance their ultraviolet response. Using a blend of materials to give favourable absorption and emission properties, 61% external quantum efficiency was achieved at 200 nm, which is better than the 20-30% typical for vacuum deposited lumogen enhancement layers used commercially.
|
Page generated in 0.0483 seconds