• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 28
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 179
  • 179
  • 28
  • 27
  • 21
  • 18
  • 17
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Novel Fe2O3-Cr2O3 catalyst for high temperature water gas shift reaction

Lei, Yun, School of Chemical Engineering & Industrial Chemistry, UNSW January 2005 (has links)
The thesis is focused on the study of high temperature water gas shift catalysis, the identification of new improved catalysts and the study of the kinetics and mechanism of reaction over these catalysts. Rh-promoted Fe2O3-Cr2O3 was found to offer best performance which was significantly better than unpromoted catalyst over wide temperatures range. An extensive literature survey is first reported. Guidelines to develop new WGS catalysts are developed. As a result, the activities of precious metals supported on various oxides for high temperature WGS reaction have been tested. Rh(1wt%) doped Fe2O3/Cr2O3, exhibits the highest activity for WGS over a wide temperature range. 5wt%CuO/Fe2O3-Cr2O3, 1wt%Pt/Cr2O3, 1wt%Pt/Fe2O3-Cr2O3, 1wt%Pt/U3O8, 1wt%Pt/10%U3O8-Al2O3 and 1wt%Pt/5%V2O5-TiO2 fall into the second most active catalysts group, with an improved activity compared to commercial Fe2O3-Cr2O3 catalyst. It is clear that both the support/catalyst and the promoter can affect the efficiency of the WGS, leading to the obvious inference that the reaction rate is controlled at the promoter ??? support interface. Further kinetic studies and characterisation (TPR, TPD, pulse-adsorption (reaction)) on Rh/Fe3O4/Cr2O3 have been conducted. The study, conducted under conditions without inhibition from products of both forward and backward reactions, shows that the overall reaction rate expression is described as: 2 22 ??? =0.0041exp(???4042.6 ) 0.64 0.5 ???0.024 exp(???6022.9 ) 0.46 0.73 CO CO H O CO H r PP P P T T . Kinetics studies carried out under fuel reforming gas compositions shows that reaction rate expression changed when the temperature of reaction varied. The reaction rate equations at temperatures of 573K, 623K and 673K are derived as: 573K: 2 2 2 - 2.84 10-6 0.6 0.12 - 9.08 10-7 0.09 0.52 rCO = ?? PCO PH O ?? PCO PH 623K: 2 2 2 - 1.45 10-6 0.99 0.40 - 7.12 10-7 0.11 0.73 rCO = ?? PCO PH O ?? PCO PH 673K: -6 2 2 2 - = 4.37 ?? 10 0.86 0.41 -1.83 ??10-6 0.28 0.66 rCO PCO PH O PCO PH , The apparent activation energy was 61.7??2.5 kJmol-1 . TPR, TPD, TPO characterisation studies and reoxidation of catalysts by CO2 or H2O show that the active site for high temperature WGS reaction on Rh/Fe2O3/Cr2O3 is reduced magnetite Fe3O4 which dissociatively breaks down the H2O to form H* and OH* and adsorbs CO2. The deposited metal, Rh, acts as a promoter by facilitating the uptake of hydrogen (H2) and carbon monoxide (CO), desorption of H2 (at high temperature) and CO2.
22

Magnetic protein cages characterized by electron magnetic resonance spectroscopy

Usselman Jr., Robert John. January 2005 (has links) (PDF)
Thesis (Ph.D.)--Montana State University--Bozeman, 2005. / Typescript. Chairperson, Graduate Committee: David J. Singel. Includes bibliographical references (leaves 124-133).
23

Still oxides run deep studying redox transformations involving Fe and Mn oxides using selective isotope techniques /

Handler, Robert Michael. Scherer, Michelle M. January 2009 (has links)
Thesis supervisor: Michelle M. Scherer. Includes bibliographic references (p. 168-179).
24

Arsenic removal effectiveness of iron oxide-based fibrous adsorbents and stability of granular iron oxide media /

Kumar, Arun. Gurian, Patrick L. January 2008 (has links)
Thesis (Ph.D.)--Drexel University, 2008. / Includes abstract and vita. Includes bibliographical references (leaves 188-201).
25

Carbon deposition by the decomposition of carbon monoxide on reduced iron oxide /

Ibidunni, Ajibola Olutoyin January 1982 (has links)
No description available.
26

Behavior of iron and titanium oxides in the glassy phase /

Shell, James Allen January 1969 (has links)
No description available.
27

Development of a high pressure hydrometallurgical process for the extraction of iron from iron oxide bearing materials

Rolfe, Wesley January 2016 (has links)
A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfilment of the requirements for the degree of Master of Science in Engineering. Johannesburg, 2016 / The feasibility of extracting iron from iron(III) oxide bearing materials with acetylacetone has been under investigation for many years. This is an alternate, environmentally friendly process for the recovery of iron compared to conventional processes that are energy intensive, have numerous costly process steps and produce large quantities of greenhouse gases. Iron(III) oxide bearing waste materials can be used in this process which reduces its environmental impact as it would not require waste storage. This study investigated the feasibility of reducing the reaction time of the liquid phase extraction of iron from iron ore fines by performing the extraction at elevated pressures and temperatures. It was found that that the extraction under pressure was dependent on temperature, pressure, particle size and solid to liquid ratio. It was found that at high temperatures and long extraction times, an unknown secondary reaction occurs that consumes the desired product, iron(III) acetylacetonate, and inhibits the recovery of these crystals. This results in lower extraction yields. It was found that the side reaction was largely dependent on the temperature of the system and the amount of iron(III) acetylacetonate present. The effects of the side reaction could be limited by lower operating temperatures and reducing the total reaction times. An optimum conversion of iron(III) oxide to iron(III) acetylacetonate of 47.2% was achieved for synthetic iron (III) oxide (> 95 wt% Fe2O3) at a total extraction time of 4 h, 160 °C, 0.025 g:1 mL, operating pressure of 1700 kPa, initial N2 feed pressure of 1010 kPa and 375 rpm stirrer speed. The optimum extraction of iron from iron ore fines (> 93 wt% Fe2O3) to iron(III) acetylacetonate was found to be 20.7% at 4 h, 180 °C, 0.025 g:1 mL and operating pressure of 1900 kPa, initial N2 feed pressure of 1010 kPa and 375 rpm stirrer speed. These are the optimum conditions where the side reaction is limited to improve the recovery and desired reaction conversion capabilities of the process. The operation under pressure yielded lower conversions than that of the atmospheric leaching process developed by Tshofu (acetylacetone water system under reflux). It was also found that it was not possible to reduce the extraction time and achieve comparable extractions when operating at higher temperatures and pressures. The formation of an additional unwanted product would also lead to unnecessary treatment costs in an industrial process. Hence, it was found that pressure leaching as an alternative is not currently viable due to the lower yields and associated high costs. Atmospheric leaching seems to be the most economically feasible option until a better alternative is found. / MT2017
28

Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide Nanoparticles

Gonzalez Lucena, Fedora 30 September 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of iv uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
29

Mineral Magnetism of Environmental Reference Materials: Iron Oxyhydroxide Nanoparticles

Gonzalez Lucena, Fedora 30 September 2010 (has links)
Iron oxyhydroxides are ubiquitous in surface environments, playing a key role in many biogeochemical processes. Their characterization is made challenging by their nanophase nature. Magnetometry serves as a sensitive non-destructive characterization technique that can elucidate intrinsic physical properties, taking advantage of the superparamagnetic behaviour that nanoparticles may exhibit. In this work, synthetic analogues of common iron oxyhydroxide minerals (ferrihydrite, goethite, lepidocrocite, schwertmannite and akaganéite) are characterized using DC and AC magnetometry (cryogenic, room temperature), along with complementary analyses from Mössbauer spectroscopy (cryogenic, room temperature), powder X-ray diffraction and scanning electron microscopy. It was found that all of the iron oxyhydroxide mineral nanoparticles, including lepidocrocite, schwertmannite and akaganéite were superparamagnetic and therefore magnetically ordered at room temperature. Previous estimates of Néel temperatures for these three minerals are relatively low and are understood as misinterpreted magnetic blocking temperatures. This has important implications in environmental geoscience due to this mineral group’s potential as magnetic remanence carriers. Analysis of the data enabled the extraction of the intrinsic physical parameters of the nanoparticles, including magnetic sizes. The study also showed the possible effect on these parameters of crystal-chemical variations, due to elemental structural incorporation, providing a nanoscale mineralogical characterization of these iron oxyhydroxides. The analysis of the intrinsic parameters showed that all of the iron oxyhydroxide mineral nanoparticles considered here have a common magnetic moment formation mechanism associated with a random spatial distribution of iv uncompensated magnetic spins, and with different degrees of structural disorder and compositional stoichiometry variability, which give rise to relatively large intrinsic magnetization values. The elucidation of the magnetic nanostructure also contributes to the study of the surface region of the nanoparticles, which affects the particles’ reactivity in the environment.
30

Infrared optical properties of some solids of possible interest in astronomy and atmospheric physics

Steyer, Terry Russell, 1945- January 1974 (has links)
No description available.

Page generated in 0.0765 seconds