• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multiferroic Bismuth Ferrite-Lead Titanate and Iron-Gallium Crystalline Solutions: Structure-Property Investigations

Wang, Naigang 20 July 2005 (has links)
Recently, multiferroics-defined as materials with coexistence of at least two of the ferroelectric, ferroelastic and ferromagnetic effects-have attracted enormous research activities. In this thesis, the structure and properties of multiferrioic BiFeO3-x%PbTiO3 and Fe-x%Ga crystalline solutions were investigated. First, the results show that modified BiFeO3-PbTiO3 based ceramics have significantly enhanced multiferroic properties, relative to BiFeO3 single crystals. The data reveal: (i) a dramatic increase in the induced polarization; and (ii) the establishment of a remnant magnetization by a breaking of the translational invariance of a long-period cycloidal spin structure, via substituent effects. In addition, temperature dependent magnetic permeability investigations of BiFeO3-xPbTiO3 crystalline solutions have shown that aliovalent La substitution results in a significant increase in the permeability. Second, room temperature high-resolution neutron and x-ray diffraction studies have been performed on Fe-x%Ga crystals for 12<x<25at%. It has been observed that the structures of both Fe-12%Ga and Fe-25%Ga are tetragonal; however, near the phase boundary between them, an averaged-cubic structure was identified. In addition, an unusual splitting along the transverse direction indicates that the crystals are structurally inhomogeneous. / Master of Science
2

Magnetoelectric Thin Film Heterostructures and Electric Field Manipulation of Magnetization

Zhang, Yue 21 June 2015 (has links)
The coupling of magnetic and electric order parameters, i.e., the magnetoelectric effect, has been widely studied for its intriguing physical principles and potentially broad industrial applications. The important interactions between ferroic orderings -- ferromagnetism, ferroelectricity and ferroelasticity -- will enable the manipulation of one order through the other in miniaturized materials, and in so doing stimulate emerging technologies such as spintronics, magnetic sensors, quantum electromagnets and information storage. By growing ferromagnetic-ferroelectric heterostructures that are able to magneto-electrically couple via interface elastic strain, the various challenges associated with the lack of single-phase multiferroic materials can be overcome and the magnetoelectric (ME) coupling effect can be substantially enhanced. Compared with magnetic field-controlled electric phenomena (i.e., the direct magnetoelectric coupling effect), the converse magnetoelectric effect (CME), whereby an electric field manipulates magnetization, is more exciting due to easier implementation and handling of electric fields or voltages. CME also affords the possibility of fabricating highly-efficient electric-write/magnetic-read memories. This study involved two avenues of inquiry: (a) exploring the strain-mediated electric field manipulation of magnetization in ferroelectric-ferromagnetic heterostructures, and (b) investigating coupling and switching behaviors at the nanoscale. Accordingly, a series of magnetoelectric heterostructures were prepared and characterized, and their electric field tunability of magnetic properties was explored by various techniques and custom-designed experiments. Firstly, the relevant properties of the individual components in the heterostructures were systematically investigated, including the piezoelectricity and ferroelectric/ferroelastic phase transformations of the ferroelectric substrates, lead magnesium niobate-lead titanate, or Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT). This investigation revealed significant information on the structure-property relationships in crystals oriented at <110>, as well as shed light on the effect of ferroelectric phase transformation on magnetoelectric coupling. This investigation of electric field controlled strain, in contrast to many prior studies, enables a more rational and detailed understanding of the magnetoelectric effect in complex ferroelectric-ferromagnetic heterostructures. The magnetoelectric thin film heterostructures were fabricated by depositing ferromagnetic iron-gallium (Fe-Ga) or cobalt ferrite (CoFe2o4 or CFO) films on top of differently-oriented ferroelectric PMN-PT substrates. Through significant electric field-induced strain in the piezoelectric substrate, the magnetic remanence and coercive field, as well as the magnetization direction of the ferromagnetic overlayer, can be substantially tuned. These goals were achieved by the interfacial strain modification of the magnetic anisotropy energy profile. The observation and analysis of the electric field tunability of magnetization and the establishment of novel controlling schemes provide valuable directions for both theoretical development and future application endeavors. / Master of Science
3

Ferromagnetic Thin and Ultra-Thin Film Alloys of Manganese and Iron with Gallium and Their Structural, Electronic, and Magnetic Properties

Mandru, Andrada Oana 19 July 2016 (has links)
No description available.
4

An Investigation On The Effect Of Structural And Microstructural Attributes On Magnetostriction Of Tb-Dy-Fe And Fe-Ga Alloys

Palit, Mithun 07 1900 (has links) (PDF)
Giant magnetostrictive RFe2 type (R represents rare earths) intermetallics form an important class of magnetic materials keeping in view of their potential applications as sensors and/ or actuators. In this thesis, one such mixed rare earth compound (Tb,Dy)Fe2 has been chosen for investigations. Being a technologically important material system, several investigations concerning physical and magnetic properties of the material and effect of processing parameters on magnetic properties have been reported in the available literature. However, existing literature does not provide a clear insight into some important aspects such as phase equilibria, evolution of texture and microstructure of directionally solidified Tb-Dy-Fe alloys. Therefore, the present work was undertaken to bring out tangible process-structure-property correlations with an emphasis to clarify the grey areas in the available literature. The investigation on the nature of ternary phase equilibria of Tb-Dy-Fe was taken up with an aim to understand the effect of Tb/Dy ratio on phase equilibria and magnetic properties of TbxDy1-xFe1.95 (x=0-1) alloys. Microstructural and micro-chemical analysis along with study of lattice parameter has been used to predict the nature of phase equilibria and the deviation from the assumed pseudo-binary behaviour. Further, from the microstructural investigations and study of lattice parameter and Curie temperature, a schematic sketch of a section of the ternary diagram, where (Tb,Dy) / Fe =1.95, was formulated and presented. Directional solidification technique is the most widely adopted method for processing the (Tb,Dy)Fe2, to impart grain orientation for practical applications. Therefore, it was aimed in the present study to understand the evolution of texture and microstructure in directionally solidified Tb0.3Dy0.7Fe1.95 alloy by modified Bridgman and zone melting techniques. The alloy was directionally solidified by modified Bridgman technique with a series of growth rates 5 - 100 cm/h, at a constant temperature gradient of 150oC/ cm. Microstructural investigation revealed formation of island banding at lower growth rate and peritectic coupled growth at higher growth rates. The texture study indicated a transition of growth texture from <113> to <110> and finally to <112> with increase of growth rate. A mechanism based on atomic attachment kinetics is proposed to explain the orientation selection with growth rate. The texture and microstructure have been correlated with magnetostriction and static strain co-efficient (dλ/dH) of the Bridgman solidified alloys. The solidification morphology observed in Bridgman solidified samples was found to be mostly plane front. Therefore, in order to understand the microstructure and texture evolution in cellular/ dendritic regime, directional solidification of Tb0.3Dy0.7Fe1.95 was attempted by zone melting technique with a lesser temperature gradient of 100oC/cm. A detailed texture study indicated a transition in preferred growth direction from <110> to <112> with increase of growth rate. In this case of cellular/ dendritic growth regime, a mechanism based on atomic attachment kinetics has been proposed and the preferred morphologies of the solid-liquid interface for <110> and <112> growth have been modelled. The modelled interfaces have been correlated to the shape of cell/ dendrite cross-section observed for the growth rates adopted in this study. Apart from the investigation carried out on the (Tb,Dy)Fe2 alloys, attempts have been made to understand the role of microstructure, especially the ordered phases on the magnetostriction of an emerging magnetostrictive material Fe-Ga. A series of alloy compositions of Fe-x at % Ga (x=17, 20, 23 and 25) were prepared and subjected to different thermal treatments and characterized for microstructural features and magnetostriction. Microstructure investigation of slow cooled, quenched and quenched + aged alloys reveals formation of ordered DO3 phase from disordered A2 phase by first order transformation in 17 and 20 at% Ga alloys, whereas for 23 and 25 at% alloys, the transformation takes place by continuous ordering. It could be observed that large magnetostriction arises owing to the presence of disordered A2 phase or ordered DO3 phase alone. The magnetostriction however decreases substantially when these two phases are co-existing.
5

Magnetic properties and magnetic resonances of single crystals based on iron borate : Experimental studies and modelling / Propriétés magnétiques et résonances magnétiques de monocristaux à base de borate de fer : Études expérimentales et modélisation

Seleznyova, Kira 16 December 2016 (has links)
La thèse porte sur la synthèse et l'étude des propriétés magnétiques de borates de fer-gallium,FexGa1-xBO3 avec 0 supérieur ou égal à x supérieur ou égal à 1. Ces matériaux sont prometteurs pour les applications; en plus, grâce à la présence, en fonction de x, de différents types d’ordre magnétique, ils sont bien adaptés au traitement de nombreux problèmes du magnétisme des solides.Le borate de fer, FeBO3 est un antiferromagnétique possédant un plan de facile aimantation et un faible ferromagnétisme. Les caractéristiques du borate de fer sont radicalement modifiées par substitution isomorphe fer – gallium diamagnétique.Nous avons mis au point une route de synthèse de monocristaux FexGa1-xBO3 de haute qualité. Comme principales techniques expérimentales, nous avons choisi les résonances magnétiques électronique (RME) et nucléaire (RMN). Selon le contenu du fer, nous avons observé:(i) la résonance antiferromagnétique, (ii) la résonance de clusters magnétiques et (iii) la résonance paramagnétique électronique (RPE). Les différents états magnétiques ont été identifiés et leurs caractéristiques – la température de Néel, le champ de Dzyaloshinskii-Moriya; les paramètres de l’hamiltonien de spin de Fe3+, etc.– ont été déterminées. La coordinence et la symétrie de sites de 11B et 71Ga ont été précisées par RMN à rotation sous l’angle « magique » (MAS). Moyennant la simulation des spectres de RPE et de MAS RMN, à l’aide de codes mis au point ad hoc, les distributions de paramètres dues au désordre local ont été déterminées. L’analyse théorique, tenant compte de contributions du champ cristallin et de l’interaction dipôle-dipôle, permet d’expliquer l’anisotropie magnétocristalline de volume et de surface. / The thesis is concerned with synthesis and studying magnetic properties of iron-galliumborates, FexGa1-xBO3 with [0 supérieur ou égal à x supérieur ou égal à 1]. These materials are promising candidates for applications;besides, occurrence of different types of magnetic ordering, depending on x, makes them suitablefor treating a number of fundamental problems in solid state magnetism.Iron borate, FeBO3 is a two-sublattice easy-plane antiferromagnet with weakferromagnetism. Physical characteristics of iron borate are radically modified by isomorphoussubstitution of a part of iron by diamagnetic gallium.We have started with developing a synthesis route for growing high-quality FexGa1-xBO3single crystals. As main experimental techniques, we have chosen Electron and Nuclear MagneticResonances (EMR, NMR). Depending on iron contents and temperature, we have observed:(i) Antiferromagnetic, (ii) Cluster Magnetic and (iii) Electron Paramagnetic Resonance (EPR).Different magnetic states have been identified and their characteristics: Néel temperature,Dzyaloshinskii-Moriya field; spin Hamiltonian parameters of isolated Fe3+ ion, etc., have beendetermined. Coordination and site symmetry of 11B and 71Ga nuclei have been specified by meansof Magic Angle Spininng (MAS) NMR. Carrying out computer simulations of EPR and MASNMR spectra with laboratory-developed codes, the parameter distributions caused by localdisorder have been determined. Theoretical analysis taking into account crystal field and dipoledipolecontributions allow interpreting volume and surface magnetocrystalline anisotropy of thecrystals.
6

Synthesis and characterisation of metal (Fe, Ga, Y) doped alumina and gallium oxide nanostructures

Zhao, Yanyan January 2008 (has links)
It is well known that nanostructures possess unique electronic, optical, magnetic, ferroelectric and piezoelectric properties that are often superior to traditional bulk materials. In particular, one dimensional (1D) nanostructured inorganic materials including nanofibres, nanotubes and nanobelts have attracted considerable attention due to their distinctive geometries, novel physical and chemical properties, combined effects and their applications to numerous areas. Metal ion doping is a promising technique which can be utilized to control the properties of materials by intentionally introducing impurities or defects into a material. γ-Alumina (Al2O3), is one of the most important oxides due to its high surface area, mesoporous properties, chemical and thermal properties and its broad applications in adsorbents, composite materials, ceramics, catalysts and catalyst supports. γ-Alumina has been studied intensively over a long period of time. Recently, considerable work has been carried out on the synthesis of 1D γ-alumina nanostructures under various hydrothermal conditions; however, research on the doping of alumina nanostructures has not been forthcoming. Boehmite (γ-AlOOH) is a crucial precursor for the preparation of γ-Alumina and the morphology and size of the resultant alumina can be manipulated by controlling the growth of AlOOH. Gallium (Ga) is in the same group in the periodic table as aluminum. β-Gallium (III) oxide (β-Ga2O3), a wide band gap semiconductor, has long been known to exhibit conduction, luminescence and catalytic properties. Numerous techniques have been employed on the synthesis of gallium oxide in the early research. However, these techniques are plagued by inevitable problems. It is of great interest to explore the synthesis of gallium oxide via a low temperature hydrothermal route, which is economically efficient and environmentally friendly. The overall objectives of this study were: 1) the investigation of the effect of dopants on the morphology, size and properties of metal ion doped 1D alumina nanostructures by introducing dopant to the AlOOH structure; 2) the investigation of impacts of hydrothermal conditions and surfactants on the crystal growth of gallium oxide nanostructures. To achieve the above objectives, trivalent metal elements such as iron, gallium and yttrium were employed as dopants in the study of doped alumina nanostructures. In addition, the effect of various parameters that may affect the growth of gallium oxide crystals including temperature, pH, and the experimental procedure as well as different types of surfactants were systematically investigated. The main contributions of this study are: 1) the systematic and in-depth investigation of the crystal growth and the morphology control of iron, gallium and yttrium doped boehmite (AlOOH) under varying hydrothermal conditions, as a result, a new soft-chemistry synthesis route for the preparation of one dimensional alumina/boehmite nanofibres and nanotubes was invented; 2) systematic investigation of the crystal growth and morphology and size changes of gallium oxide hydroxide (GaOOH) under varying hydrothermal conditions with and without surfactant at low temperature; We invented a green hydrothermal route for the preparation of α-GaOOH or β-GaOOH micro- to nano-scaled particles; invented a simple hydrothermal route for the direct preparation of γ-Ga2O3 from aqueous media at low temperature without any calcination. The study provided detailed synthesis routes as well as quantitative property data of final products which are necessary for their potential industrial applications in the future. The following are the main areas and findings presented in the study: • Fe doped boehmite nanostructures This work was undertaken at 120ºC using PEO surfactant through a hydrothermal synthesis route by adding fresh iron doped aluminium hydrate at regular intervals of 2 days. The effect of dopant iron, iron percentage and experimental procedure on the morphology and size of boehmite were systematically studied. Iron doped boehmite nanofibres were formed in all samples with iron contents no more than 10%. Nanosheets and nanotubes together with an iron rich phase were formed in 20% iron doped boehmite sample. A change in synthesis procedure resulted in the formation of hematite large crystals. The resultant nanomaterials were characterized by a combination of XRD, TEM, EDX, SAED and N2 adsorption analysis. • Growth of pure boehmite nanofibres/nanotubes The growth of pure boehmite nanofibres/nanotubes under different hydrothermal conditions at 100ºC with and without PEO surfactant was systematically studied to provide further information for the following studies of the growth of Ga and Y doped boehmite. Results showed that adding fresh aluminium hydrate precipitate in a regular interval resulted in the formation of a mixture of long and short 1D boehmite nanostructures rather than the formation of relatively longer nanofibres/nanotubes. The detailed discussion and mechanism on the growth of boehmite nanostructure were presented. The resultant boehmite samples were also characterized by N2 adsorption to provide further information on the surface properties to support the proposed mechanism. • Ga doped boehmite nanostructures Based on this study on the growth of pure boehmite nanofibre/nanotubes, gallium doped boehmite nanotubes were prepared via hydrothermal treatment at 100ºC in the presence of PEO surfactant without adding any fresh aluminium hydrate precipitate during the hydrothermal treatment. The effect of dopant gallium, gallium percentage, temperature and experimental procedure on the morphology and size of boehmite was systematically studied. Various morphologies of boehmite nanostructures were formed with the increase in the doping gallium content and the change in synthesis procedure. The resultant gallium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • Y doped boehmite nanostructures Following the same synthesis route as that for gallium doped boehmite, yttrium doped boehmite nanostructures were prepared at 100ºC in the presence of PEO surfactant. From the study on iron and gallium doped boehmite nanostructures, it was noted both iron and gallium cannot grow with boehmite nanostructure if iron nitrate and gallium nitrate were not mixed with aluminium nitrate before dissolving in water, in particular, gallium and aluminium are 100% miscible. Therefore, it’s not necessary to study the mixing procedure or synthesis route on the formation of yttrium doped boehmite nanostructures in this work. The effect of dopant yttrium, yttrium percentage, temperature and surfactant on the morphology and size of boehmite were systematically studied. Nanofibres were formed in all samples with varying doped Y% treated at 100ºC; large Y(OH)3 crystals were also formed at high doping Y percentage. Treatment at elevated temperatures resulted in remarkable changes in size and morphology for samples with the same doping Y content. The resultant yttrium doped boehmite nanostructures were characterized by TEM, XRD, EDX, SAED, N2 adsorption and TGA. • The synthesis of Gallium oxide hydroxide and gallium oxide with surfactant In this study, the growth of gallium oxide hydroxide under various hydrothermal conditions in the presence of different types of surfactants was systematically studied. Nano- to micro-sized gallium oxide hydroxide was prepared. The effect of surfactant and synthesis procedure on the morphology of the resultant gallium oxide hydroxide was studied. β-gallium oxide nanorods were derived from gallium oxide hydroxide by calcination at 900ºC and the initial morphology was retained. γ-gallium oxide nanotubes up to 65 nm in length, with internal and external diameters of around 0.8 and 3.0 nm, were synthesized directly in solution with and without surfactant. The resultant nano- to micro-sized structures were characterized by XRD, TEM, SAED, EDX and N2 adsorption. • The synthesis of gallium oxide hydroxide without surfactant The aim of this study is to explore a green synthesis route for the preparation of gallium oxide hydroxide or gallium oxide via hydrothermal treatment at low temperature. Micro to nano sized GaOOH nanorods and particles were prepared under varying hydrothermal conditions without any surfactant. The resultant GaOOH nanomaterials were characterized by XRD, TEM, SAED, EDX, TG and FT-IR. The growth mechanism of GaOOH crystals was proposed.
7

Investigations Of Magnetic Anisotropy In Ferromagnetic Thin Films And Its Applications

Sakshath, S 07 1900 (has links) (PDF)
Physical systems having dimensions smaller than, or of the same order of magnitude as, the characteristic length scale relevant to a physical property are referred to as mesoscopic physical systems. Due to the dimensions of the system, several physical properties get affected and this could reveal interesting physics which would other-wise have not been apparent. In the recent times, a lot interesting applications have resulted from such studies. The fundamental length scale in ferromagnetic systems is the exchange length. It is related to the magnetic anisotropy and exchange constants. Other length scales such as the size of a magnetic domain or a domain wall depends on the minimisation of energy associated with this length scale along with other factors such as zeeman energy, magnetostatic, magnetoelastic and anisotropy energies. Ultrathin magnetic films have thickness smaller than the exchange length. In this thickness regime, the surface of the film plays an important role. The magnetic anisotropy energy would get a significant contribution from the surface of the film and if it dominates over the volume contribution, would eventually lead to magnetisation pointing out of the plane of the film as opposed to imposition of demagnetising fields. Examples for such cases are FePt(L10 phase) films and Co(0001) films. Such films are important in memory applications where perpendicularly magnetised recording media are desired. When the lateral dimensions of thin films are reduced, demagnetising fields become even more important. Depending on the anisotropy in the system, certain domain patterns get stabilised in the final structure. This has led to important applications in the field of magnonics. The use of angular momentum transfer from spin polarised electrons to change the configuration of magnetisation of structured magnetic films has led to interesting memory and oscillator applications. The underlying physical parameter that needs to be controlled and carefully studied in all these cases is the magnetic anisotropy. It is favourable to have uniaxial magnetic anisotropy for memory and oscillators. This thesis chiefly deals with Fe/GaAs(001) systems. The choice of the physical system follows interest in spintronics where spin injection is desired into a semiconductor from a ferromagnet. The thesis is organized into chapters as follows. Chapter 1 attempts to introduce the reader to some of the basic concepts of mag-netism and some magnetic phenomena. The characteristic nature of a ferro-magnetic material is its spontaneous magnetisation due to long range ordering below the Curie temperature. But the moment is coupled, through some in-teractions, to spatial co-ordinates which leads to spatial variation of magnetic properties. Such interactions are also responsible for the formation of magnetic domains. The spatial variation of magnetic properties within a ferromagnet is called magnetic anisotropy. A major part of the thesis deals with the study of magnetic anisotropy of Fe thin films grown on GaAs(001) substrates. For a better understanding, the structure of the semiconductor is introduced first before discussing the influence of the structure of GaAs on the growth of Fe. A short description of the uniaxial magnetic anisotropy in Fe films is given before starting on an exploration of some possible reasons for it. Concepts of ferromagnetic resonance, spin torque effect and micromagnetic simulations are given. Chapter 2 gives a brief description of some of the experimental apparatus that was setup during the course of the research along with an overview of the differ-ent sample preparation and characterisation techniques used. The chapter is organised according to the general functionality of the techniques. Some con-cepts such as the use of low energy electrons, nanostructuring etc are introduced along with the corresponding techniques since it is best understood along with the instrumentation. Chapter 3 reports some surprising findings about the in-plane magnetic anisotropy in Fe films grown on an MgO underlayer. Until now, it has been understood that such films should exhibit only a four-fold magnetic anisotropy within the plane of the film. But the Fe/MgO/GaAs(001) films studied here exhibited an in-plane uniaxial magnetic anisotropy(IPUMA). IPUMA is dominant upto about 25 ML of Fe in case of Fe/MgO/GaAs(001) films whereas, in Fe/GaAs(001) films it is dominant only upto about 15 ML. Thus, the presence of the MgO film even appeared to enhance the uniaxial anisotropy as compared to the Fe/GaAs(001) films. In the ferromagnetic resonance (FMR) spectra, as many as three peaks were observed in Fe/GaAs(001) films of thickness 50 ML close to the hard axis of magnetisation. This means that three could be three energy minima possibly due to a competition between the anisotropies involved. Chapter 4 elaborates the investigations of the effect of orientation and doping con-centration of the GaAs substrate on the magnetic anisotropy of Fe/GaAs(001) films. It is found that doping the substrate (n type) reduces the strength of the IPUMA in Fe/GaAs films. In the wake of the long-standing debate of electronic structure v/s stress as the origin of the IPUMA in Ferromagnet/Semiconductor films, this result is important because it implies that the electronic structure of the Fe/GaAs interface influences the magnetic anisotropy. But stress, as a cause of IPUMA cannot be ruled out. The influence of deposition techniques on magnetic anisotropy is also investigated. Chapter 5 presents a way of manipulating magnetic anisotropy, and hence mag-netisation dynamics, by nanostructuring of epitaxial Fe films. It is based on the property that magnetic anisotropy of Fe films is thickness dependent. It is demonstrated that using techniques of nanostructuring, a 2 dimensional mag-netic system with controllable variation of local magnetic anisotropy is created. Such a system could be a potential magnonic crystal. chapter 6 demonstrates the proof of concept of a new memory device where memory is stored in the magnetic domain configuration of a ring in relation to that of a nano-wire. Switching between the memory states is acheived through spin trasfer torque of an electric current passing through the device, whereas read-out of the memory state is through the measurement of resistance of the device. Devices are made using NiFe and Co; it is seen that the behaviour of the devices can be explained taking into account the anisotropic magnetoresistance of the material used. Finally, the various results are summarised and a broad outlook is given. Some possible future research related to the topics dealt within this thesis is discussed.

Page generated in 0.035 seconds