• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 31
  • 24
  • 18
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 92
  • 54
  • 34
  • 31
  • 28
  • 27
  • 24
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Lead Sorption Efficiencies of Natural and Sunthetic Mn and Fe-oxides

O'Reilly, Susan Erin 04 October 2002 (has links)
Lead sorption efficiencies (sorption per surface area) were measured for a number of natural and synthetic Mn and Fe-oxides using a flow through reactor. The Mn-oxide phases examined included synthetic birnessite, natural and synthetic cryptomelane, and natural and synthetic pyrolusite; the Fe-oxides studied were synthetic akaganeite, synthetic ferrihydrite, natural and synthetic goethite, and natural and synthetic hematite. The sorption flow study experiments were conducted with 10 ppm Pb with an ionic strength of either 0.01 M NaNO3 or 0.01 M KNO3 both at pH 5.5. The experimental effluent solution was analyzed using aqueous spectroscopic methods and the reacted solids were analyzed using microscopy (field emission scanning electron microscopy, FE-SEM), structure analysis (powder X-ray diffraction, XRD), bulk chemical spectroscopy (energy dispersive spectroscopy, EDS), and surface sensitive spectroscopy (X-ray photoelectron spectroscopy, XPS). Overall, the synthetic Mn-oxides did have higher sorption efficiencies than the natural Mn-oxides, which in turn were higher than the natural and synthetic Fe-oxides. Only natural pyrolusite had a sorption efficiency as low as the Fe-oxides. Most of the natural and synthetic Fe-oxides examined in this study removed about the same amount of Pb from solution once normalized to surface area, although synthetic akaganeite and hematite were significantly less reactive than the rest. The observed efficiency of Mn-oxides for Pb sorption is directly related to internal reactive sites in the structures that contain them (birnessite and cryptomelane, in the case of this study). Comparisons of solution data to XPS data indicated that Pb went into the interlayer of the birnessite, which was supported by XRD; similarly some Pb may go into the tunnels of the cryptomelane structure. Layer structures such as birnessite have the highest Pb sorption efficiency, while the 2 x 2 tunnel structure of cryptomelane has lower efficiencies than birnessite, but higher efficiencies than other Mn- or Fe-oxide structures without internal reactive sites. / Ph. D.
42

Geometric and Electronic Structure Sensitivity of Methyl and Methylene Reactions on α-Cr₂O₃ and α-Fe₂O₃ surfaces

Dong, Yujung 24 October 2012 (has links)
Structural and electronic effects in hydrocarbon reactions over metal oxides have been examined by comparing the reactions of methyl (-CH₃) and methylene (=CH₂) fragments on three different oxide single crystal surfaces: α-Cr₂O₃(101̅2), α-Cr₂O₃(0001), and α-Fe₂O₃(101̅2). The intermediates have been generated through the decomposition of halogenated hydrocarbons. The primary reactions of methyl and methylene over α-Cr₂O₃ are methyl dehydrogenation to methylene, and methylene coupling (C-C bond formation) to ethylene (CH₂=CH₂). The different surface geometric structures of α-Cr₂O₃(101̅2) and (0001) lead to an increase in the activation barrier for methylene surface migration, a critical step in the coupling reaction, of 5.9 kcal/mol over the (0001) surface. For methyl dehydrogenation, differences in the local site pair (cation/anion) geometry and the proximity of surface lattice oxygen to the methyl group do not result in a significant difference in the barrier for dehydrogenation, suggesting that the surface anions play a minor role in the dehydrogenation of methyl on these surfaces. Electronic differences in the Fe³⁺ (𝑑⁵) and Cr³⁺ (𝑑³) cations on structurally-similar α-Cr₂O₃(101̅2) and α-Fe₂O₃(101̅2) surfaces lead to major differences in reaction selectivity. α-Cr₂O₃(101̅2) is nonreducible under the reaction conditions of this study, but α-Fe₂O₃(101̅2) is highly reducible due to the difference in the d electron configuration. Hydrocarbons are formed over α-Cr₂O₃(101̅2), but nonselective oxidation products (CO₂, CO, H₂O) are formed over the stoichiometric α-Fe₂O₃(101̅2) surface along with surface reduction. Reduction of the α-Fe₂O₃(101̅2) leads to a shift in the product selectivity towards formaldehyde (CH₂O) and ethylene. For the limited number of systems examined in this study, examples of geometric structure sensitive (methylene coupling) and structure insensitive (methyl dehydrogenation) reactions have been found on α-Cr₂O₃, and electronic effects are observed for the reactions on α-Cr₂O₃(101̅2) and α-Fe₂O₃. For the structure sensitive reaction, the differences in surface geometry impact the reactions kinetics over Cr₂O₃ but not the types of products formed, while the electronic differences give rise to dramatic changes in the selectivity associated with the very different products formed over α-Cr₂O₃(101̅2) and α-Fe₂O₃(101̅2). / Ph. D.
43

Resolving the Structure, Morphology, and Trace Metal Association of Nanominerals: The Case for Schwertmannite

French, Rebecca A. 08 September 2011 (has links)
Schwertmannite, a ferric oxyhydroxysulfate mineral typically found under acidic, high sulfate and iron aqueous conditions, such as acid mine drainage environments, was studied using analytical high resolution transmission electron microscopy (HRTEM). HRTEM offers advantages over bulk techniques such as powder x-ray diffraction and pair distribution function (PDF) analysis of synchrotron data, in its ability to discern multiple phases within poorly crystalline nanominerals. Based on extensive HRTEM observations of both natural and synthetic schwertmannite samples, the authors suggest that schwertmannite should not be described as a single phase mineral with a repeating unit cell, but as a polyphasic nanomineral with crystalline areas spanning less than a few nanometers within an amorphous matrix. The few visible lattice fringes observable in both natural and synthetic schwertmannite agree well with d-spacings of goethite (and jarosite in natural samples) implying that the transformation from schwertmannite to these phases occurs as a gradual structural reordering at the nanoscale. In the synthetic study, the complete transformation from schwertmannite to goethite nanorods and nanoparticles within 24 hours at 75°C was observed, indicating a low energetic barrier to schwertmannite's phase transformation. We also found that amorphous silica can be intimately entrained within natural schwertmannite, and that high concentrations of arsenic can be held in close association of nanocrystalline regions of the mineral. / Ph. D.
44

Design of Novel Synthetic Iron Oxide Nano-Catalyst Over Homemade Nano-Alumina for an Environmentally Friendly Fuel: Experiments and Modelling

Jarullah, A.T., Al-Tabbakh, B.A., Ahmed, M.A., Hameed, S.A., Mujtaba, Iqbal M. 04 July 2022 (has links)
No / Achieving an environmentally friendly fuel with respect to minimum sulfur compounds has recently became a significant issue for petroleum refining industries. This paper focuses on investigating oxidative desulfurization (ODS) process for removal of sulfur compounds found in light gas oil (LGO) in a batch reactor (at different reaction temperatures and batch time) using a novel nano-catalyst based on 4% iron oxide (Fe2O3) as an active component. Precipitation and Impregnation methods are used to prepare the nano-gamma alumina (γ-alumina) and to generate the new synthetic homemade nanocatalyst. A mathematical model is formulated for the ODS process to estimate the optimal kinetic parameters within gPROMS package. An excellent consistency with the experimental data of all runs with error less than 5% have obtained. The optimization results display that the new nanocatalyst prepared here is effective in removing more than 97% of the sulfur compounds from LGO resulting in a cleaner fuel. / The authors thank Petroleum Research and Development Center, The Iraqi Ministry of Oil /Baghdad, IRAQ for its financial support.
45

Functionalized Nanostructures : Iron Oxide Nanocrystals and Exfoliated Inorganic Nanosheets

Chalasani, Rajesh January 2013 (has links) (PDF)
This thesis consists of two parts. The first part deals with the magnetic properties of Fe3O4 nanocrystals and their possible application in water remediation. The second part is on the delamination of layered materials and the preparation of new layered hybrids from the delaminated sheets. In recent years, nanoscale magnetic particles have attracted considerable attention because of their potential applications in industry, medicine and environmental remediation. The most commonly studied magnetic nanoparticles are metals, bimetals and metal oxides. Of these, magnetite, Fe3O4, nanoparticles have been the most intensively investigated as they are, non-toxic, stable and easy to synthesize. Magnetic properties of nanoparticles such as the saturation magnetization, coercivity and blocking temperature are influenced both by size and shape. Below a critical size magnetic particles can become single domain and above a critical temperature (T B , the blocking temperature) thermal fluctuations can induce random flipping of magnetic moments resulting in loss of magnetic order. At temperatures above the blocking temperature the particles are superparamagnetic. Magnetic nanocrystals of similar dimensions but with different shapes show variation in magnetic properties especially in the value of the blocking temperature, because of differences in the surface anisotropy contribution. The properties of magnetic nanoparticles are briefly reviewed in Chapter 1. The objective of the present study was to synthesize Fe3O4 nanocrystals of different morphologies, to understand the difference in magnetic properties associated with shape and to explore the possibility of using Fe3O4 nanocrystals in water remediation. In the present study, oleate capped magnetite (Fe3O4) nanocrystals of spherical and cubic morphologies of comparable dimensions (∼10nm) have been synthesized by thermal decomposition of FeOOH in high-boiling octadecene solvent (Chapter 2). The nanocrystals were characterized by XRD, TEM and XPS spectroscopy. The nanoparticles of different morphologies exhibit very different blocking temperatures. Cubic nanocrystals have a higher blocking temperature (T B = 190 K) as compared to spheres (T B = 142 K). From the shift in the hysteresis loop it is demonstrated that the higher blocking temperature is a consequence of exchange bias or exchange anisotropy that manifests when a ferromagnetic material is in physical contact with an antiferromagnetic material. In nanoparticles, the presence of an exchange bias field leads to higher blocking temperatures T B because of the magnetic exchange coupling induced at the interface between the ferromagnet and antiferromagnet. It is shown that in these iron oxide nanocrystals the exchange bias field originates from trace amounts of the antiferromagnet wustite, FeO, present along with the ferrimagnetic Fe3O4 phase. It is also shown that the higher FeO content in nanocrystals of cubic morphology is responsible for the larger exchange bias fields that in turn lead to a higher blocking temperature. Magnetic nanoparticles with moderate magnetization can be easily separated from dispersions by applying low intensity magnetic fields. Oleate capped spherical and cubic iron oxide nanocrystals have considerable magnetic moment and hence have the potential as host-carriers for magnetic separation in environmental remediation. These nanocrystals are, however, dispersible only in non-polar solvents like chloroform, toluene, etc. Environmental remediation requires that the nanocrystals be water dispersible. This was achieved by functionalizing the surface of the iron oxide nanocrystals by coordinating carboxymethyl-β-cyclodextrin (CMCD) cavities (Chapter 3). The hydroxyl groups located at the rim of the anchored cyclodextrin cavity renders the surface of the functionalized nanocrystal hydrophilic. The integrity of the anchored CMCD molecules are preserved on capping and their hydrophobic cavities available for host-guest chemistry. The CMCD capped iron oxide particles are water dispersible and separable in modest magnetic fields (<0.5 T). Small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards arsenic ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. To extend the application of the iron oxide nanocrystals so that they can both capture and destroy organic contaminants present in water, cyclodextrin functionalized water dispersible core-shell Fe3O4@TiO2 (CMCD-Fe3O4@TiO2) nanocrystals have been synthesized (Chapter 4). The application of these particles for the photocatalytic degradation of endocrine disrupting chemicals (EDC), bisphenol A and dibutyl phthalate, in water is demonstrated. EDC molecules that may be present in water are captured by the CMCD-Fe3O4@TiO2 nanoparticles by inclusion within the anchored cavities. Once included they are photocatalytically destroyed by the TiO2 shell on UV light illumination. The magnetism associated with the crystalline Fe3O4 core allows for the magnetic separation of the particles from the aqueous dispersion once photocatalytic degradation is complete. An attractive feature of these ‘capture and destroy’ nanomaterials is that they may be completely removed from the dispersion and reused with little or no loss of catalytic activity. The second part of the thesis deals with the intercalation of surfactants in inorganic layered solids and their subsequent delamination of the functionalized solid in non-polar solvents. The solids investigated were - the anionic layered double hydroxides (LDH), the 2:1 smectite clay, montmorillonite (MMT), layered metal thiophosphates (CdPS3) and graphite oxide (GO). Layered Double Hydroxides (LDH) are lamellar solids of the general chemical formula [M0(1−x)Mx(OH)2], where M0 is a divalent metal ion and M a trivalent ion. The structure of the Mg-Al layered double hydroxide (Mg-Al LDH) may be derived from that of brucite, Mg(OH)2, by isomorphous substitution of a part of the Mg2+ by trivalent Al3+ ions with electrical neutrality maintained by interlamellar exchangeable ions like nitrate or carbonate. The ion exchange intercalation of the anionic surfactant dodecyl sulfate (DDS) in an Mg-Al LDH and the subsequent delamination of the surfactant intercalated LDH in non-polar solvent is reviewed in Chapter 5. Delamination results in a clear dispersion of neutral nanosheets. The delaminated sheets are neutral as the surfactant chains remain anchored to the inorganic sheet. On solvent evaporation, the sheets re-stack to give back the original surfactant intercalated solid. This strategy for delamination of layered solids by intercalation of an appropriate surfactant followed by dispersing in a non-polar solvent has been extended to montmorillonite (MMT) and cadmium thiophosphates (CdPS3) by ion-exchange intercalation of the cationic surfactant dioctadecyldimethylammonium bromide (DODMA) followed by sonication in non-polar solvents e.g. toluene or chloroform as in the case of the LDH (Chapter 6). The nanosheets of the MMT and CdPS3 are electrically neutral as the surfactant chains remain anchored to the inorganic sheet even after exfoliation. Graphite oxide (GO) too can be delaminated by functionalizing the sheets by covalently linking oleylamine chains to the GO sheets via an amide bond. The oleylamine functionalized GO is easily delaminated in non-polar solvents to give electrically neutral GO nanosheets. It is shown in Chapter 7 that the 1:1 mixtures of dispersions of montmorillonite-DODMA with Mg-Al LDH-DDS nanosheets can self assemble, on solvent evaporation, to give a new layered solid with periodically alternating montmorillonite and LDH layers. In this method attractive forces between the neutral exfoliated nanosheets of cationic and anionic ensures self-assembly of a perfectly periodic alternating layered structure. The method has been extended to synthesize new layered solids in which surfactant tethered cationic and anionic inorganic sheets alternate. The hybrid solids synthesized are CdPS3—MgAl-LDH, CdPS3—CoAl-LDH, GO—MgAl-LDH, GO—CoAl-LDH. The procedure outlined in Chapter 7 allows for a simple, but versatile, method for generating new periodically ordered layered hybrid solids by self-assembly.
46

Efeitos de mineralizadores na produção de pigmentos cerâmicos de óxido de ferro resíduo e comercial em matriz de sílica amorfa / Eflect of mineralization in the production of ceramic pigments commercial and waste iron in amorphow silica matriz

Schneider, Aliana Regina 14 October 2012 (has links)
Made available in DSpace on 2016-12-08T17:19:14Z (GMT). No. of bitstreams: 1 Parte 1.pdf: 120753 bytes, checksum: 83faa676dcbe647a5d0a76335228d970 (MD5) Previous issue date: 2012-10-14 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The use of iron oxide in the pigment production is justified by its wide variety of colors, high thermal stability and non-toxic. These oxides may be naturally occurring or synthetic, and currently has progressively expanded the use of industrial byproducts as a source of oxide pigments. Among the processes for the production of pigments, the ceramic process, most widely used by industries has some disadvantages such as high temperatures of calcination. The suggestion to minimize this drawback is the incorporation of substances called mineralization that would act to decrease the temperature of synthesis of these pigments. The purpose of this study was to analyze and produce ceramic pigments of iron oxide with the addition of three types of mineralization in different quantities, as ion source using a chromophore-product industry that already had shown satisfactory results when used in previous work. Moreover, as comparative factor was also produced with iron oxide pigments business under the same conditions of the pigments obtained from the byproduct. Results of thermal analysis demonstrated that the addition of mineralization acted to reduce the onset temperature of the liquid phase, and have been the basis for the choice of different temperatures of calcination. The material resulting from this process was added to porcelain paste and sintered at different temperatures in order to get close as possible to the industrial conditions. According to visual analysis was not possible to observe significant differences between the pigments obtained with the two types of iron oxide, only difference in the intensity, and samples that showed the crystallization of silica generated colors with lighter shades. Finally, the calorimetric analysis performed for the highest amount of pigments with pigments indicated mineralization situated between the red and yellow and high brightness values, indicating clear pigments. / A utilização de óxido de ferro na produção de pigmentos é justificada pela sua ampla variedade de cores, alta estabilidade térmica e atoxidade. Estes óxidos podem ser de origem natural ou sintética, sendo que atualmente vem ganhando espaço o uso de subprodutos industriais como fonte de óxidos pigmentantes. Já entre os processos para produção de pigmentos, o processo cerâmico, mais utilizado pelas indústrias apresenta algumas desvantagens, como as altas temperaturas de calcinação. A sugestão para minimizar este inconveniente é a incorporação de substâncias denominada mineralizadoras que agiriam de forma a diminuir a temperatura de síntese destes pigmentos. O intuito deste trabalho foi produzir e analisar pigmentos cerâmicos de óxido de ferro com a incorporação de três tipos de mineralizadores em quantidades diferentes, utilizando como fonte de íon cromóforo um subproduto industrial que já havia apresentado resultados satisfatórios quando utilizado em trabalho anterior. Além disso, como fator comparativo foi produzido também pigmentos com óxido de ferro comercial nas mesmas condições dos pigmentos obtidos com o subproduto. Resultados de analise térmica demonstraram que a adição de mineralizadores atuou de forma a diminuir a temperatura de início de fase líquida, além de terem sido base para a escolha de diferentes temperaturas de calcinação. O material resultante deste processo foi adicionado à massa porcelânica e sinterizado em diferentes temperaturas com a finalidade de se aproximar o máximo possível das condições industriais. De acordo com analise visual não foi possível observar diferenças significativas entre os pigmentos obtidos com os dois tipos de óxido de ferro, apenas diferença na intensidade, sendo que amostras que apresentaram cristalização da sílica geraram cores com tonalidades mais claras. Por fim, as analises de calorimetria realizada para os pigmentos com maior quantidade de mineralizadores indicaram pigmentos situados entre o vermelho e o amarelo e valores de luminosidade altos, indicando pigmentos claros.
47

Acid monolayer functionalized iron oxide nanoparticle catalysts

Ikenberry, Myles January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / Keith L. Hohn / Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80˚C and starch at 130˚C, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide nanoparticle syntheses and functionalizations for biomedical and catalytic applications, affecting understandings of surface charge and other material properties.
48

Design of a nanoplatform for treating pancreatic cancer

Manawadu, Harshi Chathurangi January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Stefan H. Bossmann / Pancreatic cancer is the fourth leading cause of cancer-related deaths in the USA. Asymptomatic early cancer stages and late diagnosis leads to very low survival rates of pancreatic cancers, compared to other cancers. Treatment options for advanced pancreatic cancer are limited to chemotherapy and/or radiation therapy, as surgical removal of the cancerous tissue becomes impossible at later stages. Therefore, there's a critical need for innovative and improved chemotherapeutic treatment of (late) pancreatic cancers. It is mandatory for successful treatment strategies to overcome the drug resistance associated with pancreatic cancers. Nanotechnology based drug formulations have been providing promising alternatives in cancer treatment due to their selective targeting and accumulation in tumor vasculature, which can be used for efficient delivery of chemotherapeutic agents to tumors and metastases. The research of my thesis is following the principle approach to high therapeutic efficacy that has been first described by Dr. Helmut Ringsdorf in 1975. However, I have extended the use of the Ringsdorf model from polymeric to nanoparticle-based drug carriers by exploring an iron / iron oxide nanoparticle based drug delivery system. A series of drug delivery systems have been synthesized by varying the total numbers and the ratio of the tumor homing peptide sequence CGKRK and the chemotherapeutic drug doxorubicin at the surfaces of Fe/Fe₃O₄-nanoparticles. The cytotoxicity of these nanoformulations was tested against murine pancreatic cancer cell lines (Pan02) to assess their therapeutic capabilities for effective treatments of pancreatic cancers. Healthy mouse fibroblast cells (STO) were also tested for comparison, because an effective chemotherapeutic drug has to be selective towards cancer cells. Optimal Experimental Design methodology was applied to identify the nanoformulation with the highest therapeutic activity. A statistical analysis method known as response surface methodology was carried out to evaluate the in-vitro cytotoxicity data, and to determine whether the chosen experimental parameters truly express the optimized conditions of the nanoparticle based drug delivery system. The overall goal was to optimize the therapeutic efficacy in nanoparticle-based pancreatic cancer treatment. Based on the statistical data, the most effective iron/iron oxide nanoparticle-based drug delivery system has been identified. Its Fe/Fe₃O₄ core has a diameter of 20 nm. The surface of this nanoparticle is loaded with the homing sequence CGKRK (139-142 peptide molecules per nanoparticle surface) and the chemotherapeutic agent doxorubicin (156-159 molecules per surface), This nanoplatform is a promising candidate for the nanoparticle-based chemotherapy of pancreatic cancer.
49

Magnetic Nanoparticles Based on Iron: Synthesis, Characterization, Design, and Application

Shultz, Michael David 01 January 2008 (has links)
Magnetic nanoparticles are of great interest for a wide range of applications. This work has focused on three primary forms of iron based nanoparticles and combinations thereof: α-iron, iron oxide, and iron carbide or cementite. The synthesis of several core-shell particles including cementite-iron oxide, α-iron-cementite, and α-iron-iron oxide was accomplished through reverse micelle routes and high temperature decomposition of iron pentacarbonyl in various media. Structural analysis to confirm the structures was performed using extended x-ray absorption fine structure (EXAFS) techniques. A rapid characterization technique was developed utilizing a correlation between Fourier transform infrared spectroscopy and EXAFS to determine the full metal cation distribution between the octahedral and tetrahedral sites in manganese zinc ferrite (MZFO). This method was then used to show that the initial Fe3+ to Fe2+ ratio in MZFO synthesis could be used to design a desired cation distribution and affected the zinc incorporation levels into the resultant ferrite. Functionalization of nanoparticles for aqueous dispersions and ferrofluids has varying degrees of importance, depending on the application. In applications such as magnetic resonance imaging (MRI) where the targets are biological systems, it was important to produce solutions that will not aggregate in the high magnetic field of the MRI. It was also vital to characterize decomposition mechanisms and products that would be presented to the body after use as a contrast agent. This work has provided insight into both the preparation of magnetic samples for MRI applications and implications of the biocompatibility of reactive and decomposition products. Three successful methods of forming dispersions that would not aggregate in the high magnetic field of the MRI were comprised of cysteine/polyethylene glycol (PEG), PEG based ferrofluids, and dopamine/PEG. The dopamine functionalization however showed reactivity with the iron/iron oxide nanoparticles and led to the formation of the cytotoxic dopamine quinone and resulted in the destruction of the nanoparticles. Using all three types of dispersions to compare the iron based nanomaterials, the MRI measurements concluded with the iron oxide ferrofluid yielding the highest R2 enhancement.
50

Synthesis, Surface Functionalization, and Biological Testing of Iron Oxide Nanoparticles for Development as a Cancer Therapeutic

Gilliland, Stanley E, III 01 January 2015 (has links)
Iron oxide nanoparticles are highly researched for their use in biomedical applications such as drug delivery, diagnosis, and therapy. The inherent biodegradable and biocompatible nanoparticle properties make them highly advantageous in nanomedicine. The magnetic properties of iron oxide nanoparticles make them promising candidates for magnetic fluid hyperthermia applications. Designing an efficient iron oxide nanoparticle for hyperthermia requires synthetic, surface functionalization, stability, and biological investigations. This research focused on the following three areas: optimizing synthesis conditions for maximum radiofrequency induced magnetic hyperthermia, designing a simple and modifiable surface functionalization method for specific or broad biological stability, and in vitro and in vivo testing of surface functionalized iron oxide nanoparticles in delivering effective hyperthermia or radiotherapy. The benzyl alcohol modified seed growth method of synthesizing iron oxide nanoparticles using iron acetylacetonate as an iron precursor was investigated to identify significant nanoparticle properties that effect radiofrequency induced magnetic hyperthermia. Investigation of this synthesis under atmospheric conditions revealed a combination of thermal decomposition and oxidation-reduction mechanisms that can produce nanoparticles with larger crystallite sizes and decreased size distributions. Nanoparticles were easily surface functionalized with (3-Glycidyloxypropyl)trimethoxysilane (GLYMO) without the need for organic-aqueous phase transfer methods. The epoxy ring on GLYMO facilitated post-modifications via a base catalyzed epoxy ring opening to obtain nanoparticles with different terminal groups. Glycine, serine, γ-aminobutryic acid (ABA), (S)-(-)-4-amino-2-hydroxybutyric acid (SAHBA), ethylenediamine, and tetraethylenepentamine were successful in modifying GLYMO coated-iron oxide nanoparticles to provide colloidal and varying biological stability while also allowing for further conjugation of chemotherapeutics or radiotherapeutics. The colloidal stability of cationic and anionic nanoparticles in several biologically relevant media was studied to address claims of increased cellular uptake for cationic nanoparticles. The surface functionalized iron oxide nanoparticles were investigated to determine effects on cellular uptake and viability. In vitro tests were used to confirm the ability of iron oxide nanoparticles to provide effective hyperthermia treatment. S-2-(4-Aminobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA) was coupled to SAHBA and carboxymethylated polyvinyl alcohol surface functionalized iron oxide nanoparticles and radiolabeled with 177Lu. The capability of radiolabeled iron oxide nanoparticles for delivering radiation therapy to a U87MG murine orthotopic xenograft model of glioblastoma was initially investigated.

Page generated in 0.0435 seconds