• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • Tagged with
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vliv ISL1 na vývoj neurosenzorických buněk vnitřního ucha / Role of ISL1 in development of neurosensory cells of inner ear

Vochyánová, Simona January 2020 (has links)
To understand the pathophysiology of hearing loss, it is necessary to identify genes responsible for embryonic development of neurosensory cells in the inner ear. The aim of this work is to clarify the role of LIM-homeodomain transcription factor ISL1 in the development of these cells. Using Cre-loxP recombination strategy, we generated a mouse line with time and site- specific deletion of Isl1 gene in NEUROD1-Cre expressing cells (Isl1 CKO). Although the early development of stato-acoustic ganglion was not affected by Isl1 deletion, at E14,5, we observed abnormalities in neuronal migration, formation of spiral ganglion and axon guidance in the Isl1 CKO cochlea. The length of the cochlear sensory epithelium was shortened by 20% as a consequence of lower proliferation activity of sensory precursor cells. Our results suggest that ISL1 is necessary for spiral ganglion formation and innervation of the Organ of Corti. Key words: transcription factor ISL1, neurons, Cre-loxP system, mouse model
2

Funkční role ISLET1 během neurosenzorového vývoje vnitřního ucha. / Functional role of ISLET1 in the neurosensory development of the inner ear.

Hampejsová, Zuzana January 2014 (has links)
Loss of hearing affects more than 10 % of the population, and one newborn in a thousand is born with defects of the inner ear. Transcriptional factors involved in the development of inner ear are important in our understanding of the causes of inner ear defects. ISLET1 is one of these factors. ISLET1 expression is detected in the sensory and neuronal cells of the inner ear. It participates in otocyst formation, and the specification and differentiation of cells of cochlea and vestibular system. The functional role of ISLET1 during inner ear development was investigated. Its role was studied by using Pax2-Isl1 transgenic mice that overexpress Islet1 under the control of the Pax2 promoter. Two transgenic lines were generated, Pax2-Isl1/300 and Pax2- Isl1/52. Two copies of the Pax2-Isl1 transgene were inserted to Pax2-Isl1/300 genome and one copy was inserted to the Pax2-Isl1/52 genome. Defects in sense of hearing were detected in both lines and circling behavior, a defect of balance, was detected in the Pax2-Isl1/300 transgenic mice. We observed high postnatal lethality in heterozygote transgenic mice. Pax2-Isl1/52 homozygote mutation is lethal at embryonic day 10 (E10,5). Pax2-Isl1/300 homozygote letality couldn't be detected because of the inability to breed heterozygote mutated mice of this line....
3

Neuronal Development in the Embryonic Retina : Focus on the Characterization, Generation and Development of Horizontal Cell Subtypes

Edqvist, Per-Henrik January 2006 (has links)
<p>Horizontal cells are retinal interneurons that modulate the output from photoreceptors. Two horizontal cell (HC) subtypes are commonly identified in the vertebrate retina: axon-bearing and axon-less HCs. In this work, we have identified Isl1 as a novel HC marker and demonstrated that Lim1 and Isl1 distinguish axon-bearing and axon-less HCs, respectively. In the chick retina, axon-less HCs are furthermore split into two different subtypes based on the expression of GABA and TrkA.</p><p>We have demonstrated that during early chick retinogenesis, HCs expressing either Lim1 or Isl1 are generated consecutively as two equally large sub-groups at different time points. Moreover, these newborn HCs undertake an unexpected bi-directional migration before settling in their final laminar position. Different HC subtypes complete this migration at different times.</p><p>We investigated the role of activin signaling during HC subtype generation. Activin or its inhibitor follistatin was administrated during the main phase of HC generation and analyzed when HCs had completed migration. Activin caused a significant decrease in both HC subtypes and decreased the proliferation of retinal precursor cells. Follistatin increased the number of late born (Isl1+) HCs, which migrated to the HC-layer during a prolonged migration period. Both treatments affected retinal histology, but only activin influenced the generation of retinal populations other than HCs. These effects were most likely mediated by altered proliferation in certain retinal precursor cells.</p><p>The data on HC subtype ratios, birth-dates, migration, apoptosis and extrinsic activin modulation favor a scenario where the mature proportions of HC subtypes are generated sequentially from a specific HC-precursor cell lineage early in development and remain stable thereafter. These proportions are not adjusted by apoptosis, but rather by the combined actions of transcription factors and extrinsic signaling. Our studies on HC subtypes and their development promises to facilitate future studies on HC development, evolution and function.</p>
4

Neuronal Development in the Embryonic Retina : Focus on the Characterization, Generation and Development of Horizontal Cell Subtypes

Edqvist, Per-Henrik January 2006 (has links)
Horizontal cells are retinal interneurons that modulate the output from photoreceptors. Two horizontal cell (HC) subtypes are commonly identified in the vertebrate retina: axon-bearing and axon-less HCs. In this work, we have identified Isl1 as a novel HC marker and demonstrated that Lim1 and Isl1 distinguish axon-bearing and axon-less HCs, respectively. In the chick retina, axon-less HCs are furthermore split into two different subtypes based on the expression of GABA and TrkA. We have demonstrated that during early chick retinogenesis, HCs expressing either Lim1 or Isl1 are generated consecutively as two equally large sub-groups at different time points. Moreover, these newborn HCs undertake an unexpected bi-directional migration before settling in their final laminar position. Different HC subtypes complete this migration at different times. We investigated the role of activin signaling during HC subtype generation. Activin or its inhibitor follistatin was administrated during the main phase of HC generation and analyzed when HCs had completed migration. Activin caused a significant decrease in both HC subtypes and decreased the proliferation of retinal precursor cells. Follistatin increased the number of late born (Isl1+) HCs, which migrated to the HC-layer during a prolonged migration period. Both treatments affected retinal histology, but only activin influenced the generation of retinal populations other than HCs. These effects were most likely mediated by altered proliferation in certain retinal precursor cells. The data on HC subtype ratios, birth-dates, migration, apoptosis and extrinsic activin modulation favor a scenario where the mature proportions of HC subtypes are generated sequentially from a specific HC-precursor cell lineage early in development and remain stable thereafter. These proportions are not adjusted by apoptosis, but rather by the combined actions of transcription factors and extrinsic signaling. Our studies on HC subtypes and their development promises to facilitate future studies on HC development, evolution and function.
5

Requirements for Nr2f transcription factors in the maintenance of atrial myocardial identity in vertebrates

Martin, Kendall 02 June 2023 (has links)
No description available.
6

PRIMING CARDIOVASCULAR STEM CELLS FOR TRANSPLANTATION USING SHORT-TERM HYPOXIA

Hernandez, Ivan 01 June 2016 (has links)
Conventional medical treatments fail to address the underlying problems associated with the damage inflicted by a coronary event. Thus, the long-term prognosis of patients admitted for heart failure is disheartening, with reported survival rates of 25 percent. Recent advances in stem cell research highlight the potential benefits of autologous stem cell transplantation for stimulating repair in heart tissue. However, a majority of those suffering from cardiovascular diseases are older adults whose autologous cells no longer possess optimum functional capacity. Additional work is needed to identify the optimal cell types or conditions that will promote cardiovascular regeneration across all age groups. A pretreatment, such as short-term hypoxia, and concurrent implementation of a novel progenitor, such as those that co-express Isl-1 and c-Kit, may enhance the results reported in clinical trials completed to date. However, the effects of short-term hypoxia in this novel cell type are unknown and warrant investigation in vitro. Cloned adult and neonatal Isl-1+ c-Kit+ human cardiovascular progenitor cells were characterized and expanded for study. Populations from both age groups were preconditioned using short-term hypoxia (1% O2 for six hours) and, to identify shifts in gene expression, compared to their respective control (21% O2 at 37 °C) via qRT-PCR. Flow cytometry and western blot analysis was utilized to measure phosphorylation of Akt. Progression through the cell cycle was also analyzed by flow cytometry. Cellular function was evaluated by the use of a TUNEL assay and Transwell® invasion assay. Hypoxia-mediated alterations of a genetic or functional nature in Isl-1+ c-Kit+ human cardiac progenitors are clearly age-dependent. Although both age groups accrued benefit, the neonatal progenitors procured significantly greater improvements. Short-term hypoxia significantly elevated Akt phosphorylation in neonatal Isl-1+ c-Kit+ human cardiac progenitors. Benefits afforded to both age groups by hypoxic pretreatment included significant upregulation of pro-survival transcripts, and enhanced invasion capabilities in vitro. Therefore, prior to transplantation, hypoxic preconditioning may improve the ability of transplanted stem cells to home towards damaged areas of the heart and support cardiac regeneration in vivo.
7

Využití testu CAM pro charakterizaci a studium invazivních vlastností rakovinných buněk / The use of CAM assay for characterization and study of cancer cell invasive properties

Vágnerová, Lenka January 2011 (has links)
The chorioallantoic membrane (CAM) of chicken embryos belongs to the in vivo model systems frequently used for the study of angiogenesis and cell invasiveness. Using CAM assay we have tested selected chicken sarcoma cell lines characterized by different angiogenic properties and different ability to form metastasis. In addition to CAM assay, several other methods have been used to characterize the phenotype of these cell lines. We have selected a few proteins which could significantly influence the angiogenic and metastatic properties of investigated cell lines. We have established cell lines stably overexpressing these genes and compared their phenotypes with parental cell lines. We have shown that genes encoding ISL1, ARNT2, PROM1, HOXA11 proteins participate, in our experimental model, in activation of programes controlling angiogenesis and cell invasion.
8

Codes transcriptionnels et expression du gène du récepteur de la GnRH au cours du développement et chez l'adulte

Schang, Anne-Laure 01 June 2011 (has links) (PDF)
Le récepteur hypophysaire de la GnRH (RGnRH) joue un rôle crucial dans le contrôle de la fonctionde reproduction. Dans le promoteur distal du Rgnrh, j'ai caractérisé un élément de réponsebifonctionnel répondant aux protéines LIM à homéodomaine ISL1/LHX3 et à GATA2. D'autre part,deux motifs TAAT situés dans la région plus proximale confèrent à ce gène la capacité de répondreaux facteurs Paired-like PROP1 et OTX2. Tous ces facteurs, exprimés précocement au cours del'ontogenèse hypophysaire, pourraient participer à l'émergence de l'expression du Rgnrh. Hors del'hypophyse, j'ai découvert que le Rgnrh est exprimé au cours du développement postnatal dansl'hippocampe de rat, où il module la plasticité synaptique. Par ailleurs, j'ai identifié deux nouveauxsites d'expression, la rétine et la glande pinéale. Ces résultats mettent en lumière l'importancefonctionnelle de ce récepteur et de son ligand et les rôles multiples qu'il ont acquis au cours del'évolution des Vertébrés.
9

Funkční role SOX2 v neurosenzorickém vývoji vnitřního ucha / Functional role of SOX2 in inner ear neurosensory development

Dvořáková, Martina January 2020 (has links)
The main functional cells of the inner ear are neurons and sensory cells that are formed from a common embryonic epithelial neurosensory domain. Discovering genes important for specification and differentiation of sensory cells and neurons in the inner ear is a crucial basis for understanding the pathophysiology of hearing loss. Some of these factors are necessary not only for the inner ear but also for the development of other neurosensory systems such as the visual and olfactory system. The aim of this work was to reveal functions of transcription factor SOX2 in inner ear development by using mouse models with different conditional deletions of Sox2 gene. Sox2 gene was deleted by cre-loxP recombination. In Isl1-cre, Sox2 CKO mutant, reduced number of hair cells differentiated only in some inner ear organs (utricle, saccule and cochlear base) and not in others (cristae and cochlear apex). Early forming inner ear neurons in the vestibular ganglion and neurons innervating the cochlear base developed in these mutants but died by apoptosis due to the lack of neurotrophic support from sensory cells. Late forming neurons in the cochlear apex never formed. In Foxg1-cre, Sox2 CKO mutant, only rudimental ear with no sensory cells was formed. The initial formation of vestibular ganglion with peripheral and...
10

Codes transcriptionnels et expression du gène du récepteur de la GnRH au cours du développement et chez l’adulte / Transcriptionnal codes and expression of the GnRH receptor gene during development and in adult

Schang, Anne-Laure 01 June 2011 (has links)
Le récepteur hypophysaire de la GnRH (RGnRH) joue un rôle crucial dans le contrôle de la fonctionde reproduction. Dans le promoteur distal du Rgnrh, j’ai caractérisé un élément de réponsebifonctionnel répondant aux protéines LIM à homéodomaine ISL1/LHX3 et à GATA2. D’autre part,deux motifs TAAT situés dans la région plus proximale confèrent à ce gène la capacité de répondreaux facteurs Paired-like PROP1 et OTX2. Tous ces facteurs, exprimés précocement au cours del’ontogenèse hypophysaire, pourraient participer à l’émergence de l’expression du Rgnrh. Hors del’hypophyse, j’ai découvert que le Rgnrh est exprimé au cours du développement postnatal dansl’hippocampe de rat, où il module la plasticité synaptique. Par ailleurs, j’ai identifié deux nouveauxsites d’expression, la rétine et la glande pinéale. Ces résultats mettent en lumière l’importancefonctionnelle de ce récepteur et de son ligand et les rôles multiples qu’il ont acquis au cours del’évolution des Vertébrés. / In the pituitary, the GnRH receptor (GnRHR) plays a crucial role in the neuroendocrine control ofreproductive function. Within the distal region of the Gnrhr promoter, I have characterized abifunctional response element modulated by the LIM homeodomain proteins ISL1/LHX3 and byGATA2. Besides, in the proximal region of the promoter, two TAAT motifs conferred response toPaired-like factors PROP1 and OTX2. All these factors are expressed during pituitary ontogenesis andcould participate in the onset and regulation of Gnrhr expression. Outside of the pituitary, I havediscovered that the Gnrhr was expressed during postnatal development in the rat hippocampus, whereit modulated synaptic plasticity. Furthermore, I have identified two novel sites of Gnrhr expression, theretina and the pineal gland. Altogether, these data highlight the functional importance of this receptorand its ligand as well as the multiple roles they have acquired during vertebrate evolution.

Page generated in 0.0343 seconds