• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 68
  • 19
  • 14
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 273
  • 154
  • 136
  • 97
  • 81
  • 71
  • 68
  • 63
  • 62
  • 57
  • 50
  • 49
  • 49
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Inflammatory Mediators and Enterovirus Infections in Human Islets of Langerhans

Moëll, Annika January 2008 (has links)
<p>Type 1 diabetes (T1D) is due to a selective loss of the insulin producing β-cells. However, the process responsible for this loss is still unknown. There is accumulating evidence that enteroviruses (EVs) are involved in T1D. In addition to direct virus-induced cytolysis, EVs could facilitate β-cell destruction by inducing inflammatory cytokines. Induction of such genes has previously been shown in EV-infected islets <i>in vitro</i>. Modulation of inflammatory mediators expressed in the islets could be a possible strategy to reduce β-cell destruction.</p><p>In the first paper we screened uninfected isolated human islets for genes with the potential to induce or modulate an immune response. We found that several of the genes expressed in the islets encode proteins with a powerful biological activity, such as IL-1β, IL-8, MIP-2α, MCP-1 and MIF. This indicates that the islets themselves can express several triggers of inflammation, and if expressed <i>in vivo</i> these mediators would probably contribute to β-cell destruction.</p><p>The vitamin B3 derivate, nicotinamide (NA), has been shown to modulate expression of factors important for coagulation and inflammatory responses. Addition of NA into isolated islet cultures resulted in a reduced expression of the pro-inflammatory chemokine MCP-1 and the coagulation activator tissue factor, suggesting that NA may have implications for both inflammatory responses and the pro-coagulant activity of islets.</p><p>We successfully isolated EVs from three newly diagnosed T1D patients. All isolates showed tropism for human islets and β-cells <i>in vitro</i> and clearly affected islet function. We also found that EV infection induced islet secretion of the chemokines IP-10 and MCP-1and that this induction could be blocked or reduced by addition of NA to the culture medium. Interestingly, NA also reduced viral replication and virus-induced islet destruction.</p><p>To conclude, this thesis provides new information about expression and modulation of inflammatory mediators in infected and uninfected human islets that could trigger inflammatory reactions leading to β-cell destruction. Moreover, it further strengthens the causal relationship between EV and T1D.</p>
42

The Role of Oxygen During In Vitro Culture and Immunoisolation of Islets of Langerhans

Fraker, Christopher A 19 April 2011 (has links)
While clinical transplantation of islets of Langerhans for the treatment of insulin dependent Diabetes Mellitus has shown significant promise in recent years, there remains a need for procedural optimizations to improve cell viability, functionality and ultimately, graft longevity. One of the most critical factors to islet cell survival is the proper oxygenation of these highly metabolic cellular aggregates. In culture, islets experience suboptimal oxygen profiles delimited by steep gradients across culture media. When retransplanted, they are subjected to extremes of hypoxia and anoxia, resulting in pronounced graft dysfunction and cell loss, which is further exacerbated when these cells are immunoisolated in polymer matrices. This study examined the effects of improving both in-vitro culture and immunoisolation of islet cells by optimizing oxygen mass transfer via oxygen carriers in the form of perfluorocarbons. Specifically, new systems for these applications were developed utilizing perfluoromoeities and conventional culture (polydimethylsiloxane) and immunoisolation (sodium alginate) matrices. During in vitro culture of islet cells, the use of perfluoro-impregnated PDMS culture platforms enhanced cell recovery, viability and function over the culture period. Additionally, marginal mass transplants of the islets cultured in these novel platforms functioned better in recipients than relevant controls. In immunoisolation, the optimization of perfluorocarbon emulsions was performed investigating the effects of combinations of surfactants and perfluorocarbons on oxygen mass transfer and cell viability. Emulsions were well characterized using particle size analysis by dynamic light scattering, perfluorocarbon inclusion by gravimetry and oxygen diffusivity measurements utilizing fluorescent optodes. A novel method was developed for the assessment of dissolved oxygen content of these emulsions. Optimal emulsions, as determined by predicted/measured oxygen transfer enhancement over relevant controls, were utilized in alginate matrices for microencapsulation of cell lines, initially, and then, islets of Langehans. The effects of these potential improvements were assessed by in-vitro potency assays, including a novel method for assessing glucose stimulated insulin release, and in transplantation efficacy in rodent marginal mass models. While the improvements in culture were promising in cell line studies, the observed benefit did not translate in islet culture. The cause was found to be related to permeability impediments generated from the surfactant components utilized in emulsion manufacture. In addition to the development of several new methods for the characterization of oxygen containing solutions and the potency assessment of isolated islets of Langerhans, the impact of these studies is important in the field of polymer engineering. We observed that the use of Polyethylene glycol (PEG) based materials may limit transport of nutrients and oxygen critical to cells. Additionally, we developed cell culture platforms that enhance the viability, number and function of cultured islet cells, potentially impacting the clinical realm where cell preservation is critical to transplant outcome.
43

Inflammatory Mediators and Enterovirus Infections in Human Islets of Langerhans

Moëll, Annika January 2008 (has links)
Type 1 diabetes (T1D) is due to a selective loss of the insulin producing β-cells. However, the process responsible for this loss is still unknown. There is accumulating evidence that enteroviruses (EVs) are involved in T1D. In addition to direct virus-induced cytolysis, EVs could facilitate β-cell destruction by inducing inflammatory cytokines. Induction of such genes has previously been shown in EV-infected islets in vitro. Modulation of inflammatory mediators expressed in the islets could be a possible strategy to reduce β-cell destruction. In the first paper we screened uninfected isolated human islets for genes with the potential to induce or modulate an immune response. We found that several of the genes expressed in the islets encode proteins with a powerful biological activity, such as IL-1β, IL-8, MIP-2α, MCP-1 and MIF. This indicates that the islets themselves can express several triggers of inflammation, and if expressed in vivo these mediators would probably contribute to β-cell destruction. The vitamin B3 derivate, nicotinamide (NA), has been shown to modulate expression of factors important for coagulation and inflammatory responses. Addition of NA into isolated islet cultures resulted in a reduced expression of the pro-inflammatory chemokine MCP-1 and the coagulation activator tissue factor, suggesting that NA may have implications for both inflammatory responses and the pro-coagulant activity of islets. We successfully isolated EVs from three newly diagnosed T1D patients. All isolates showed tropism for human islets and β-cells in vitro and clearly affected islet function. We also found that EV infection induced islet secretion of the chemokines IP-10 and MCP-1and that this induction could be blocked or reduced by addition of NA to the culture medium. Interestingly, NA also reduced viral replication and virus-induced islet destruction. To conclude, this thesis provides new information about expression and modulation of inflammatory mediators in infected and uninfected human islets that could trigger inflammatory reactions leading to β-cell destruction. Moreover, it further strengthens the causal relationship between EV and T1D.
44

Encapsulation of Protein Microfiber Networks Supporting Pancreatic Islets

STEELE, JOSEPH ALLAN MCKINNON 24 August 2011 (has links)
A method was developed to produce and incorporate a network of discrete, genipin-crosslinked gelatin microfibers around a pancreatic islet within a barium alginate microcapsule. This technique allows for the encapsulation of a porous fibrous matrix without the geometrical restrictions required for cellular aggregate seeding. Microfibers were produced from a novel vortex-drawn extrusion system with an alginate support matrix. Optimization culminated in a hydrated fiber diameter of 22.3 ± 0.4 μm, a 98% reduction in cross sectional area, while making the process more reliable and less labour intensive. The optimized microfibers were encapsulated at 40 vol% within 294 ± 4 μm 1.6% barium alginate microparticles by an electrostatic-mediated dropwise extrusion system. Pancreatic islets extracted from Sprague Dawley rats were encapsulated within the microparticles, and analyzed over a 21-day preliminary in vitro study. Acridine orange and propidium iodide fluorescent viability staining and light microscopy indicated a significant increase in viability for the fiber-laden particles relative to fiber-free control particles at days 7, 14, and 21. The fiber-laden system also reduced the incidence of disrupted islet cohesion from 31% to 8% at day 21, and showed evidence of islet-fiber adhesion. Preliminary investigations into insulin secretion and metabolic activity showed no significant difference between test and control groups. Further investigation into benefits of islet encapsulation within an extracellular matrix fiber network will be the subject of future studies with this body of work serving as a foundation. The system developed in this investigation could be developed into a modular scaffold system for tissue engineering beyond the field of islet research. / Thesis (Master, Chemical Engineering) -- Queen's University, 2011-08-18 15:05:50.917
45

Characterization of Human Pancreatic Beta-cell Progenitors as a Means to Alleviate the Shortage of Donor Tissue for Islet Transplantation

Anderson, Sarah J Unknown Date
No description available.
46

The potential of novel small inhibitory molecules to prevent the rejection of neonatal porcine islets in mice

Mihalicz, Dana Unknown Date
No description available.
47

Tolerance to neonatal porcine islet xenografts induced by a combination of monoclonal antibodies

Arefanian, Hossein Unknown Date
No description available.
48

Mathematical modeling of insulin response in encapsulated islets of Langerhans

Lundén, Mattias January 2014 (has links)
Transplantation of the islets of Langerhans is a promising technique for restoring the impairedinsulin production in brittle type 1 diabetics. The downside is that the patient will have to takeimmunosuppressant drugs in order to protect the islet cells from the immune system. Donorsare also sparse, making the quest of finding sufficient amounts of islets for transplantationhard. Encapsulation of the islets of Langerhans has been proposed as a means of protectingthe cells from the immune system taking away the need for immunosuppresives. The mostcommon encapsulation technique is extravascular capsules, which are categorized into micro-and macrocapsules. The microcapsules hold only one or a small set of islet whereas themacrocapsules hold a large quantity of islets.This thesis investigates the encapsulation impact on the beta-cells rapid insulin response torising plasma glucose levels. This was done by simulating the glucose-insulin system inMATLAB with included encapsulation of the islets. Two current macro-encapsulation set upswere used in the model, Beta-Air and ViaCyte devices, and they were compared against anormal case. The results showed that the Beta-Air device would not be able to restorenormoglycemia in a T1DM patient but rather showed a delay in insulin response, while theViaCyte device could mimic the normal case well.
49

Tolerance to neonatal porcine islet xenografts induced by a combination of monoclonal antibodies

Arefanian, Hossein 11 1900 (has links)
Islet transplantation is a more physiological way to treat type 1 diabetes. However, shortage of donor tissue and chronic administration of immune suppressive drugs has limited the widespread application of this therapy for all patients with type 1 diabetes, particularly children suffering from this disease. Xenogeneic islet transplantation particularly neonatal porcine islets (NPI) holds promise for clinical transplantation because of the potentially unlimited supply of islets. New evidence suggests that monoclonal antibodies (mAbs) specific for immune cell surface molecules could be employed in the prevention of islet graft rejection as well as induction of immunological tolerance to the transplanted grafts without the need for continuous administration of harmful immune suppressive drugs. It was shown by our group that short-term administrations of a combination of anti-LFA-1 and anti-CD154 mAbs which targets both adhesion and costimulatory pathways of T cell activation, is highly effective in preventing NPI xenograft rejection. In this thesis, we determined whether short-term administration of a combination of anti-LFA-1 and anti-CD154 mAbs could induce tolerance to NPI xenografts. Our data show that this combination of mAbs can induce dominant, species and tissue specific tolerance to NPI xenografts which is mediated by regulatory T cells in non-autoimmune prone B6 mice. We also found that T cell subsets such as CD4+ and CD8+ T cells as well as antigen presenting cells (APC) play an important role in the induction and maintenance of tolerance to NPI xenografts. In addition we found that PD-1/PDL interaction is important for induction and maintenance of tolerance to NPI xenografts. Finally, we found that this combined mAb therapy was effective in preventing NPI xenografts rejection in autoimmune prone NOD mice when it was combined with anti-CD4 mAb. It is may hope that the research presented in this thesis will provide insight into the nature of the immune responses to xenogeneic islet transplantation in humans and aid in the development of effective, tolerance inducing therapies, so that patients with T1DM will once again know a life free from their disease. / Experimental Surgery
50

Interaction between pancreatic cancer and beta cells : intraislet significance of islet amyloid polypeptide /

Wang, Feng, January 1900 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst. / Härtill 6 uppsatser.

Page generated in 0.0452 seconds