• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 18
  • 12
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 196
  • 48
  • 21
  • 20
  • 20
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Tandem Reactions Involving Ruthenium Alkylidenes

Finnegan, David Francis January 2009 (has links)
Thesis advisor: Marc L. Snapper / Tandem Reactions have proven themselves to be useful reactions for the synthesis of highly complex materials. Ruthenium alkylidenes are shown to be useful precursors for the development of new tandem processes. First, a new tandem metathesis/hetero-Pauson-Khand process is developed using Grubbs' second generation catalyst. Next, various metatheis/olefin isomerization processes are explored. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
62

Fundamentals and applications of co-crystal methodologies: reactivity, structure determination, and mechanochemistry

Atkinson, Manza Battle Joshua 01 July 2011 (has links)
This thesis describes applications in co-crystal reactivity, structure determination, and mechanochemical preparation. We also investigate the solution-phase reactivities of products derived from a template-directed synthesis. Specifically, we described the acid treatment of an achiral molecular ladder of C2h symmetry composed of five edge-sharing cyclobutane rings, or a [5]-ladderane, with acid results in cis- to trans- isomerization and/or oxidation of end pyridyl groups. Solution NMR spectroscopy and quantum chemical calculations support the isomerization to generate two diastereomers; namely, an achiral and a unique chiral ladderane. The NMR data, however, could not lead to unambiguous configurational assignments of the two isomers. Single-crystal X-ray diffraction was employed to determine each configuration. One isomer readily crystallized as a pure form and X-ray diffraction revealed the molecule as being achiral based on Ci symmetry. The second isomer resisted crystallization under a variety of conditions. Consequently, a strategy based on a co-crystallization was developed to generate single crystals of the second isomer. Co-crystallization of the isomer with a carboxylic acid readily afforded single crystals that confirmed a chiral ladderane based on C2 symmetry. We also demonstrate how the stereochemistry can be retained upon treatment with acid. It will be shown how a monocyclobutane can be used as a model system when investigating the reactivity of the [5]-ladderane. While investigating the reactivity of a diene diacid we determined that a bicyclobutyl that bears six carboxylic acid groups results from a trimerization of the solid in pure form in the solid state. Powder X-ray diffraction and a co-crystallization are used to solve the structure of the diene and elucidate the stereochemistry of the bicyclobutyl, respectively. Having established the reactivity of the diene diacid we used hydrogen-bond-acceptor (HBA) templates to assemble the diacid in the solid state in a photoactive solid for an intermolecular [2 + 2] photocycloaddition as well as a photostable solid. To enhance strategies to generate stereocontrolled products derived from reactive co-crystals mechanochemical methods were applied to eliminate or reduce the solvent used to prepare the co-crystal solids. In particular, we show how supermolecules with olefins organized by hydrogen-bond donor and acceptor templates that react in the solid state rapidly form co-crystals via solvent-free and liquid-assisted grinding.
63

Thermal Chemistry of Nitromethane on Cu(111)

Syu, Cui-Fang 31 July 2012 (has links)
Nitromethane is the simplest organic-nitro compound as well as the archetype of an important class of high explosive. Homogeneous nitromethane reactions have been the subject of extensive studies. Particularly the unimolecular isomerization of nitromethane to methyl nitrite is proven to be competitive with simple C-N bond (bond energy 60 kcal/mol) rupture. The activation energy for the rearrangement was measured to be 55.5 kcal/mol and methyl nitrite has a very weak CH3O-NO bond energy 42 kcal/mol lower than that for homolysis. The thermal chemistry of nitromethane on Cu(111) was studied by a combination of temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS) techniques. TPD spectra show that the desorption features include the physisorbed multilayer and monolayer of CH3NO2 at 150 and 190 K, respectively. The major decomposition pathway is via cleavage of O-N bond to yield a major product NO, which is characterized by m/z 30(NO+). A possible contribution from isomerization of nitromethane to methyl nitrite (CH3NO2 CH3ONO) on the surface cannot be ruled out at 278 K. In addition to isomerization, the dehydrogenation products CO and CO2 are also unveiled as part of the desorption features at 314 and 455 K, respectively. We can further prove the reactivity of nitromethane on Cu(111) at 367 K by using the deuterated form of nitromethane which reveals the corresponding desorption TPR/D signals of D2, D2O and CD4. However, we find that nitromethane also reacts by dissociating the C-H bond and the O-N bond, however, leaving the C-N bond intact. Along this reaction channel, HCN desorbs as a product above 360 K, as evidenced by a broad desorption feature of m/z 27. Dimerization of CN to C2N2 occurs at 815 K. The RAIR spectroscopy demonstrates that nitromethane is indeed adsorbed on Cu(111) at 100 K. The formation of methoxy and formyl are supported by the observation of desorption of NO at 278 K with the characteristic NO stretching mode found at 1535 cm-1. Moreover, we assign side-bonded CN and aminomethylene (HC-NH2) present on Cu(111). After the surface is annealed to 330 K, a signature band at 2173 cm-1 is assigned to terminal-bounded CN stretching mode. This band eventually fades out above 900 K consistent with the evolution of cyanogen at 815 K.
64

The synthesis and configuration of some polydentate amino acid complexes of cobalt(III) : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at the University of Canterbury /

Wilson-Coutts, Sarah Mary. January 1900 (has links)
Thesis (M. Sc.)--University of Canterbury, 2009. / Typescript (photocopy). "June 2009." Includes bibliographical references. Also available via the World Wide Web.
65

Picosecond dynamics of 4-methanolstilbene isomerization in liquids and supercritical fluids /

Wiemers, Kathy Lynn, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 136-143). Also available on the Internet.
66

Picosecond dynamics of 4-methanolstilbene isomerization in liquids and supercritical fluids

Wiemers, Kathy Lynn, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 136-143). Also available on the Internet.
67

Reduced-space analyses of the coherent control of quantum many-body dynamics /

Shah, Suhail P. January 2001 (has links)
Thesis (Ph. D.)--University of Chicago, Dept. of Chemistry, August 2001. / Includes bibliographical references. Also available on the Internet.
68

An investigation into the fragmentation and isomerization products of small aldehydes: an electron bombardment matrix isolation study

WHITE, MATTHEW 29 June 2009 (has links)
The gas-phase chemistry of butanal, propanal, and acetaldehyde has been investigated using electron bombardment matrix isolation techniques. Each aldehyde was diluted in excess argon gas and subjected to electron bombardment with 300eV electrons. The products of subsequent reaction processes were matrix isolated and analyzed by FTIR absorption spectroscopy. Ionized butanal produced a variety of decomposition products including propane, propene, propyne, ethene, ethyne, CCCO, ketene, formaldehyde, CO, CH2=CHCH2•, CH2CHO•, HCO• and methane. Products resulting from ionized propanal included the ethyl radical, ethane, ethene, ethyne, CO, CH2CHO•, HCO• and methane. In both cases the products are believed to be formed from C—C cleavages of the parent ion followed by hydrogen atom scavenging and/or hydrogen atom abstraction from proximally located species. Dehydrogenation products of propane and ethane are proposed to result from product secondary ionization, a process dependent on high electron currents. Surprisingly, in the case of butanal, the McLafferty Rearrangement, a dominant process in electron ionization mass spectrometry, was not observed to occur. Electron bombardment of acetaldehyde:Ar mixtures produced many decomposition products including methane, CO, HCO•, CH3CO•, CH2CHO•, CH3• and ketene. The isomerization product, vinyl alcohol, was also observed. As way of investigating the mechanisms of the above products, experiments were performed in which the acetaldehyde:Ar mole ratio was varied. Variations in the acetaldehyde:Ar mole ratio produced dramatic variations in the products formed, demonstrating a transition from unimolecular chemistry at low acetaldehyde mole ratios, to processes consistent with bimolecular processes at intermediate mole ratios. Variations in the total flow rate of gas resulted in nonsystematic changes in product yields but provided further evidence for unimolecular methane formation via the elimination of neutral CO. Finally, an investigation into the mechanism of vinyl alcohol using the acetaldehyde isotopomer, CD3CHO, in conjunction with computational methods provided further evidence that enol formation occurs as a result of a direct 1,3-H-transfer and not consecutive 1,2-H-transfers. / Thesis (Master, Chemistry) -- Queen's University, 2009-06-26 10:51:32.331
69

An investigation into the effects of L-Arabinofuranose O-glycosylation of hydroxyproline

Mantha, Venkata 07 July 2014 (has links)
The amino acid (2S, 4R)-4-hydroxyproline (Hyp) plays a critical role in animal kingdom as structural protein collagen. It is ubiquitous in plant cell walls performing various functions such as structural assembly, plant hormones, plant growth, defense against pathogens, etc. Glycosylation of Hyp is often seen in plant cell walls with L-Arabinofuranose and D-Galactopyranose and not in animal kingdom. Glycosylation is a post-translational modification, which affects characteristics of proteins and peptides. The main objective of this thesis is to synthesize various L-arabinofuranosylated hydroxyproline model amides and investigate their thermodynamic and kinetic properties of cis/trans amide isomerization. These results are compared with the previous research of D-galactopyranosylated hydroxyproline model amides, which may provide an insight to structural implications for their stability and conformations of peptides and specificity in plants. Both - and -L-arabinosylation of Hyp resulted in the stabilization of trans rotameric state at room temperature while the α-anomer leads to cis rotamer stabilization at higher temperature. Similarly, both unnatural 4S-hydroxyproline (hyp) building blocks resulted in stabilization of trans rotamer but α-anomer shows exo configuration instead of endo. This result shows a reverse trend when compared to galactosylated hydroxyproline building blocks as previous research results in our group. Our results may provide further insight to the role of glycosylation on protein structure and stability in plants.
70

Integrating computational chemistry and mass spectrometry : a study of isomerization reactions of oxygen-containing ions in the gas phase /

Fell, Lorne Montgomery. January 1999 (has links)
Thesis (Ph.D.) -- McMaster University, 1999. / Includes bibliographical references. Also available via World Wide Web.

Page generated in 0.0813 seconds