• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Normalisation of Early Isometric Force Production as a Percentage of Peak Force, During Multi-Joint Isometric Assessment

Comfort, Paul, Dos'Santos, Thomas, Jones, Paul A., McMahon, John J., Suchomel, Timothy J., Bazyler, Caleb D., Stone, Michael H. 01 January 2019 (has links)
Purpose: To determine the reliability of early force production (50, 100, 150, 200, and 250 ms) relative to peak force (PF) during an isometric mid-thigh pull and to assess the relationships between these variables. Methods:: Male collegiate athletes (N = 29; age 21.1 [2.9] y, height 1.71 [0.07] m, body mass 71.3 [13.6] kg) performed isometric mid-thigh pulls during 2 separate testing sessions. Net PF and net force produced at each epoch were calculated. Within- and between-session reliabilities were determined using intraclass correlation coefficients and coefficient of variation percentages. In addition, Pearson correlation coefficients and coefficient of determination were calculated to examine the relationships between PF and time-specific force production. Results:: Net PF and time-specific force demonstrated very high to almost perfect reliability both within and between sessions (intraclass correlation coefficients .82–.97; coefficient of variation percentages 0.35%–1.23%). Similarly, time-specific force expressed as a percentage of PF demonstrated very high to almost perfect reliability both within and between sessions (intraclass correlation coefficients .76–.86; coefficient of variation percentages 0.32%–2.51%). Strong to nearly perfect relationships (r = .615–.881) exist between net PF and time-specific net force, with relationships improving over longer epochs. Conclusion:: Based on the smallest detectable difference, a change in force at 50 milliseconds expressed relative to PF > 10% and early force production (100, 150, 200, and 250 ms) expressed relative to PF of >2% should be considered meaningful. Expressing early force production as a percentage of PF is reliable and may provide greater insight into the adaptations to the previous training phase than PF alone.

Page generated in 0.1093 seconds