Spelling suggestions: "subject:"isomonodromy"" "subject:"monodromic""
1 |
SMJ analysis of monodromy fields.Davey, Robert Michael. January 1988 (has links)
The connection discovered by M. Sato, T. Miwa and M. Jimbo (SMJ) between the monodromy-preserving deformation theory of the two-dimensional Euclidean Dirac operator and quantum fields is rigorously established for the case of nonreal S¹ monodromy parameters. This connection involves the expression of the associated n-point functions in terms of solutions to deformation equations which arise as necessary conditions for the monodromy exhibited by a class of multivalued solutions of the Euclidean Dirac equation to be preserved under perturbations of branch points. Our approach utilizes recent results involving infinite-dimensional group representations. A lattice version of the n-point function is introduced as a section of a determinant bundle defined over an infinite dimensional Grassmannian. A trivialization for this bundle is singled out so that the corresponding n-point functions behave like Ising correlations in the massive scaling regime. Then the SMJ n-point functions are recovered as the scaled functions. A parallel scaling analysis is carried out with lattice analogues of the Euclidean Dirac wave functions which scale to square-integrable multivalued solutions of the Euclidean Dirac equation and the connection between the SMJ deformation theory and the n-point functions is rigorously established in terms of local Fourier expansion coefficients of these wave functions. These results are presented in detail for two-point functions with the same monodromy associated to each site.
|
2 |
Connection Problem for Painlevé Tau FunctionsProkhorov, Andrei 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We derive the differential identities for isomonodromic tau functions, describing their
monodromy dependence. For Painlev´e equations we obtain them from the relation of tau
function to classical action which is a consequence of quasihomogeneity of corresponding
Hamiltonians. We use these identities to solve the connection problem for generic solution
of Painlev´e-III(D8) equation, and homogeneous Painlev´e-II equation.
We formulate conjectures on Hamiltonian and symplectic structure of general isomonodromic deformations we obtained during our studies and check them for Painlev´e equations.
|
3 |
Stokes' Phenomenon arising from the confluence of two simple polesHorrobin, Calum January 2018 (has links)
We study certain confluences of equations with two Fuchsian singularities which produce an irregular singularity of Poincaré rank one. We demonstrate a method to understand how to pass from solutions with power-like behavior which are analytic in neighbourhoods to solutions with exponential behavior which are analytic in sectors and have divergent asymptotic behavior. We explicitly calculate the Stokes' matrices of the confluent system in terms of the monodromy data, specifically the connection matrices, of the original system around the merging singularities. The confluence of Gauss' hypergeometric equation gives an excellent opportunity to show our approach with a concrete example. We explicitly show how the Stokes' data arise in the confluences of the isomonodromic deformation problems for the Painlevé equations PVI to PV and PV to PIII(D6).
|
4 |
Équations d'isomonodromie, solutions algébriques et dynamique / Isomonodromy equations, algebraic solutions and dynamics.Girand, Arnaud 31 August 2016 (has links)
Une déformation isomonodromique d'une sphère épointée est une famille de connexions logarithmiques plates sur cette dernière ayant toutes, à conjugaison globale près, la même représentation de monodromie. Ces objets sont paramétrés par les solutions d'une certaine famille d'équations aux dérivées partielles, les systèmes de Garnier, qui sont équivalents dans le cas de la sphère à quatre trous aux équations de Painlevé VI. L'objet des travaux présentés ici est de construire de nouvelles solutions algébriques des ces systèmes dans le cas de la sphère à cinq trous. Dans une première partie, nous classifions les déformations isomonodromiques algébriques obtenues par restriction aux droites d'une connexion logarithmique plate sur le plan projectif complexe dont le lieu polaire est une courbe quintique. On obtient ainsi deux nouvelles familles de solutions algébriques du système de Garnier associé. Dans une deuxième partie, nous exploitons le fait qu'une déformation isomonodromique algébrique correspond à une orbite finie sous l'action du groupe modulaire sur la variété des caractères de la sphère à cinq trous pour obtenir de nouveaux exemples de telles orbites. Nous employons pour ce faire la convolution intermédiaire sur les représentations de groupes libres développée par Katz Enfin, nous décrivons une généralisation partielle de ce procédé au cas d'un tore complexe à deux trous. / We call isomonodromic deformation any family of logarithmic flat connections over a punctured sphere having the same monodromy representation up to global conjugacy. These objects are parametrised by the solutions of a particular family of partial differential equations called Garnier systems, which are equivalent to the Painlevé VI equations in the four punctured case. The purpose of this thesis is to construct new algebraic solutions of these systems in the five punctured case. First, we give a classification of algebraic isomonodromic deformations obtained by restricting to lines some logarithmic flat connection over the complex projective plane whose singular locus is a quintic curve. We obtain two new families of algebraic solutions of the associated Garnier system. In a second part, we use the fact that any algebraic isomonodromic deformation corresponds to a finite orbit under the mapping class group action on the character variety of the five punctured sphere to obtain new examples of such orbits. We do this by using Katz's middle convolution on representations of free groups. Finally, we give a partial generalisation of this procedure in the case of a twice punctured complex torus.
|
5 |
Geometry of moduli spaces of meromorphic connections on curves, Stokes data, wild nonabelian Hodge theory, hyperkahler manifolds, isomonodromic deformations, Painleve equations, and relations to Lie theory.Boalch, Philip 12 December 2012 (has links) (PDF)
Short summary of main work since 1999
|
Page generated in 0.0435 seconds