• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 7
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 58
  • 27
  • 11
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Study of Catalytic Oxidation of Isopropyl Alcohol in an Air Stream over Honeycomb Catalyst

Huang, Shi-wei 29 June 2004 (has links)
ABSTRACT Isopropyl Alcohol (denoted as IPA) is a valuable chemical product, which is used in the chemical industry such as synthetic resin, essential oils and surface paint. Moreover, factory of the production of photography and electronics are also the user of IPA.IPA is the typical pollutant emitted from those industrial processing . It is known to be causing severe irritation and burns and is suspected to have long-term effects such as bronchitis. This study was to investigate the effect on conversion, deactivation of long-term test, selectivity of product and kinetics in oxidation of IPA over Cu and Cu/Ce catalysts supported on ceramic honeycomb. The explanation of results can be divided into several major parts as follows: 1. In the of selection catalyst, we find that 20%Cu/Ce catalysts prepared by wet- impregnation has the best conversion and selectivity. 2. The conversion of IPA in catalytic reaction is increased with the increasing both of reaction temperature and influent concentration of oxygen but decreased with the going up of initial concentration of IPA, space velocity and relative humidity. 3. In the catalyst stability of long-term test, Cu/Ce catalysts had a good stability after 7 days reaction in heterogeneous reactor. The tests such as XRD, SEM and EA were also determined to verify the stability from surface of catalyst. 4. Two kinetic models, Power rate law and Mars-Van Krevelen model were used to fit the kinetic data of the decomposition of IPA. Power rate law is suitable to describe the catalytic decomposition of IPA under the operation range in this work.
12

Development of an integrated organic film removal and surface conditioning process using low molecular weight alcohols for advanced Integrated Circuit (IC) fabrication

Kamal, Tazrien 12 1900 (has links)
No description available.
13

Catalytic decomposition reactions A further study of the reactions of isopropyl alcohol at surfaces of zinc oxide,

Kemper, Arthur Bernard. January 1938 (has links)
Thesis--Catholic University of America, 1938. / "An attempt to answer the questions raised and left unanswered by the work of Langan."--P. 2. "Literature cited": p. 29.
14

Catalytic decomposition reactions. A further study of the reactions of isopropyl alcohol at surfaces of zinc oxide,

Kemper, Arthur Bernard. January 1938 (has links)
Thesis--Catholic University of America, 1938. / "An attempt to answer the questions raised and left unanswered by the work of Langan."--p. 2. "Literature cited": p. 29.
15

Mercury-Sensitized Photochemical Reactions of Isopropyl Alcohol

Armstrong, Andrew Thurman 05 1900 (has links)
This thesis describes the reactions of mercury-sensitized isopropyl alcohol when bombarded with 2537 Angstrom radiation.
16

Pincer Complexes with Isopropyl Substituents A Density Functional Theory Study

Lim, XiaoZhi 11 December 2011 (has links)
Complexes with pincer ligand moieties have garnered much attention in the past few decades. They have been shown to be highly active catalysts in several known transition metal-catalyzed organic reactions as well as some unprecedented organic transformations. At the same time, the use of computational organometallic chemistry to aid in the understanding of the mechanisms in organometallic catalysis for the development of improved catalysts is on the rise. While it was common in earlier studies to reduce computational cost by truncating donor group substituents on complexes such as tertbutyl or isopropyl groups to hydrogen or methyl groups, recent advancements in the processing capabilities of computer clusters and codes have streamlined the time required for calculations. As the full modeling of complexes become increasingly popular, a commonly overlooked aspect, especially in the case of complexes bearing isopropyl substituents, is the conformational analysis of complexes. Isopropyl groups generate a different conformer with each 120 ° rotation (rotamer), and it has been found that each rotamer typically resides in its own potential energy well in density functional theory studies. As a result, it can be challenging to select the most appropriate structure for a theoretical study, as the adjustment of isopropyl substituents from a higher-energy rotamer to the lowest-energy rotamer usually does not occur during structure optimization. In this report, the influence of the arrangement of isopropyl substituents in pincer complexes on calculated complex structure energies as well as a case study on the mechanism of the isomerization of an iPrPCP-Fe complex is covered. It was found that as many as 324 rotamers can be generated for a single complex, as in the case of an iPrPCP-Ni formato complex, with the energy difference between the global minimum and the highest local minimum being as large as 16.5 kcalmol-1. In the isomerization of a iPrPCP-Fe complex, it was found that the isopropyl substituents not only influence the calculated structure energies, but they dictate the mechanism of isomerization with the rotation of isopropyl substituents from the arrangement in the starting material complex to the arrangement in the product complex being the rate-determining step.
17

The Mercury-Sensitized Photochemical Reactions of Isopropyl Benzene and Methylcyclohexane

Holland, Walter 08 1900 (has links)
This thesis describes the theoretical results of mercury-sensitized photochemical reactions of isopropyl benzene and methylcyclohexane. The reactions are carried out and the results are analyzed.
18

Coordination Polymerization Of Cyclic Ethers By Metal Xanthates And Carbamates

Tas, Huseyin 01 September 2003 (has links) (PDF)
Zinc xanthates are active catalysts in stereoregular polymerization of propylene oxide and markedly more stable than that of known classical stereoregular catalysts. But steric control of zinc xanthates is weaker. To find more effective catalyst systems the isopropyl xanthates of Cu, Pb, Ni, Fe, Al and Sn are investigated and only copper (Cu(isoPr)Xt) and tin (Sn(isoPr)Xt) isopropyl xanthates were appeared to be active, but Cu(isoPr)Xt yielded only low molecular weight product. Therefore Sn(isoPr)Xt system was investigated in detail in polymerization of propylene oxide (PO). Polymerization of PO with this catalyst produced two contrasting polymers / high molar mass, crystalline (K-polymer) and low molar mass (D-polymer). Formation of double bonds in D-polymer was thought to be due to as an anionic process. Polymerization reactions were studied by changing polymerization conditions and reacting catalyst with predetermined amount of water. It&amp / #8217 / s found that Sn(isoPr)Xt have considerably low efficiency than that of Zn(isoPr)Xt catalyst. The yield linearly increases by increasing catalyst concentration. The propagation is competed by termination or transfer process hence overall activation energy is negative. Some mechanistic features of this system was also discussed. The catalytical activity of carbamates in this field has also been reported, without any information about catalytical efficiency and stereoregularity of the process. Therefore zinc diethyl dithiocarbamate was also studied and found as an active catalyst in stereoregular polymerization but it showed weaker efficiency in the PO polymerization than that of Zn(isoPr)Xt catalyst (about 12 times weaker).
19

Evaluation of a sanitizing system using isopropyl alcohol quaternary ammonium formula and carbon dioxide for dry-processing environments

Kane, Deborah M. January 1900 (has links)
Master of Science / Food Science / Kelly J. K. Getty / Dry-processing environments are particularly challenging to clean and sanitize because water introduced into systems not designed for wet cleaning can favor growth and establishment of pathogenic microorganisms such as Salmonella. The objective was to determine the efficacy of isopropyl alcohol quaternary ammonium (IPAQuat) formula and carbon dioxide (CO[subscript]2) sanitizer system for eliminating Enterococcus faecium and Salmonella on food contact surfaces. Coupons of stainless steel and conveyor belting material used in dry-processing environments were spot-inoculated in the center of 5 × 5 cm coupons with approximately 7.0 log CFU/ml of E. faecium and up to 10 log CFU/ml of a six-serotype composite of Salmonella and subjected to IPAQuat-CO[subscript]2 sanitation treatments using exposure times of 30 s, 1 or 5 min. After sanitation treatments, wet coupons were swabbed for post-treatment survivors. Preliminary experiments included coupons which were soiled with a flour and water solution prior to inoculation and subsequent sanitation treatments. For the main study, inoculated surfaces were soiled with a breadcrumb flour blend and allowed to sit on the lab bench for a minimum of 16 h before sanitation. Preliminary results showed that IPAQuat-CO[subscript]2 sanitizing system was effective in reducing approximately 3.0 logs of E. faecium and Salmonella from clean and soiled surfaces after 1 min exposure but higher initial inoculum levels were needed to demonstrate >5 log reductions. For the main study, pre-treatment Salmonella populations were approximately 7.0 log CFU/25 cm[superscript]2 and post-treatment survivors were 1.3, < 0.7 (detection limit), and < 0.7 log CFU/25 cm[superscript]2 after 30 s, 1 or 5 min sanitizer exposures, respectively, for both clean and soiled surfaces. Treatment with IPAQuat-CO[subscript]2 sanitation system using 30 s sanitizer exposures resulted in 5.7 log CFU/25 cm[superscript]2 reductions whereas, greater than 6.0 log CFU/25 cm[superscript]2 reductions were observed for sanitizer exposures of 1 and 5 min. The IPAQuat-CO[subscript]2 sanitation system reduced 6 logs CFU/25 cm[superscript]2 of Salmonella with sanitizer exposure times of at least 1 min. The IPAQuat-CO[subscript]2 system would, therefore, be an effective sanitation system to eliminate potential contamination from Salmonella on food contact surfaces and have application in facilities that process dry ingredients or low-moisture products.
20

Optimizing Solvent Extraction of PCBs from Soil

O'Connell, Maureen January 2009 (has links)
Polychlorinated biphenyls (PCBs) are carcinogenic persistent contaminants. Although their manufacturing in North America ceased in the late 1970s, their high heat resistance made their use widespread over their production lifetime. As a result, PCB contamination has occurred globally and in particular has plague brownfield redevelopment in urban environments. The remediation of PCB contaminated soil or sediments has historically been dealt with through the expensive and unsustainable practice of excavation followed by off-site disposal or incineration. One potential technology that has shown some success with on-site remediation of PCB contamination is solvent extraction. Solvent extraction is technically simple; it involves excavating the contaminated soil, placing it in a vessel and adding solvent. The PCBs are extracted by the solvent and the treated soil is returned for use on site. Although successful at removing a large quantity of PCBs from some soils, this technology can be improved upon by extracting additional PCB mass and making the extraction more efficient and suitable for colder climates. This thesis aimed to identify the factors controlling PCB extraction with solvents in order to optimize PCB extraction as it is applied on different soil types and in various climates. The research investigated the impact of elevated moisture contents (≤ 20% by weight) on solvent extraction efficiency, the effects of low temperatures (<5ºC) on solvent extraction, and developed a kinetic model to represent PCB solvent extraction. As past research has shown, weathered PCB in soil is more difficult to remove. Contaminated field samples from Southern Ontario, Canada were used for this work, rather than synthetically prepared samples. The impact of elevated moisture contents and low temperature on extraction efficiency was determined through a series of screening experiments using polar and non-polar solvents at both 20ºC and 4ºC. It was hypothesized that improved extractions may be possible with combinations of polar and non-polar solvents. Based on the results of these screening experiments, a factorial experiment was designed using solvent combinations to further assess the role of moisture contents and low temperatures. The role of PCB mass distribution among grain sizes was also evaluated to see if optimization based on grain size separation is possible. Finally, experiments were performed to generate data suitable for the development of a kinetic model that incorporates key factors affecting solvent extraction. Four suitable solvents for solvent extraction in Ontario were identified through a literature review and these were used for this work: isopropyl alcohol (polar), ethanol (polar), triethylamine (non-polar) and isooctane (non-polar). Triethylamine outperformed isooctane and performed best on its own rather than in combination with polar solvents. An interaction between soil moisture content and choice of polar solvent (isopropyl alcohol versus ethanol) was established: a given polar solvent achieves optimal PCB extraction at a specific moisture content range. Temperature was also identified as significantly influencing PCB extraction. Although it was determined that PCBs were distributed unevenly amongst grain sizes, a simple relationship between grain size and fractional organic carbon or organic content was not found. A simple two-compartment kinetic model was developed which is suitable for predicting the PCB concentrations extracted up to 24 hours. The model incorporates both temperature and soil to solvent ratio in order to estimate PCB concentration extracted.

Page generated in 0.0444 seconds