11 |
Fabrication and characterization of porous shape memory alloysPenrod, Luke Edward 30 September 2004 (has links)
This work details an investigation into the production of porous shape memory alloys (SMAs) via hot isostatic press (HIP) from prealloyed powders. HIPing is one of three main methods for producing porous SMAs, the other two are conventional sintering and selfpropagating hightemperature synthesis (SHS). Conventional sintering is characterized by its long processing time at near atmospheric pressure and samples made this way are limited in porosity range. The SHS method consists of preloading a chamber with elemental powders and then initiating an explosion at one end, which then propagates through the material in a very short time. HIPing provides a compromise between the two methods, requiring approximately 5 hours per cycle while operating in a very controlled environment. The HIPing method gives fine control of both temperature and pressure during the run which allows for the production of samples with varying porosity as well as for finetuning of the process for other characteristics. By starting with prealloyed powder, this study seeks to avoid the drawbacks while retaining the benefits of HIPing with elemental powders.
In an extension of previous work with elemental powders, this study will apply the HIP method to a compact of prealloyed powders. It is hoped that the use of these powders will limit the formation of alternate phases as well as reducing oxidation formed during preparation. In addition, the nearspherical shape of the powders will encourage an even pore distribution. Processing techniques will be presented as well as a detailed investigation of the thermal and mechanical properties of the resulting material.
|
12 |
An automated approach to astrogeodetic levellingBreach, M. January 2002 (has links)
No description available.
|
13 |
Microstructure and mechanical properties of titanium alloys reinforced with titanium borideHill, Davion M., January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 346-353).
|
14 |
Corrosion behavior of porous NiTi shape memory alloy prepared by capsule free hot isolated pressing processingChan, Benny See Tsun. January 2005 (has links) (PDF)
Thesis (M.Sc.)--City University of Hong Kong, 2005. / At head of title: City University of Hong Kong, Department of Physics and Materials Science, Master of Science in materials engineering & nanotechnology dissertation. Title from title screen (viewed on Aug. 31, 2006) Includes bibliographical references.
|
15 |
How Water, Ice, and Sediment Deform the Earth: Novel Developments and Applications of Models of Glacial Isostatic AdjustmentKuchar, Joseph 26 November 2018 (has links)
Sea-level change in response to the growth and melt of ice sheets and glaciers is a process called glacial isostatic adjustment (GIA). This includes deformation of the surface of the Earth itself in response to the extreme mass exchanges between the oceans and continents, as well as changes to the gravitational potential that describe the sea surface in response to the redistribution of surface mass as well as mass within the Earth. This thesis describes four research projects I've conducted in the field of GIA modelling.
Most GIA models represent the lithosphere, the outermost layer of the Earth, as functionally elastic. However, there is a large temperature gradient within the lithosphere that would lead to a reduction in viscosity with depth. Therefore, in Chapter 2, I developed and incorporated more realistic lithosphere structure into the GIA model, and demonstrate that this added structure results in a time-dependence to the response of the lithosphere.
While the usual inputs to a GIA model are the ice load and Earth description, there are regions where other processes need to be accounted for. In the Mississippi Delta region, processes associated with the deposition of sediment carried by the Mississippi River are strong drivers of local sea-level change, and include isostatic adjustment as well as compaction of the sediment layers over time. Therefore, in Chapter 3, I incorporated a treatment of sediment isostatic adjustment into the GIA model and applied it to the Mississippi Delta region. Our results indicate that the sediment isostatic adjustment signal is important in the vicinity of the delta, but small otherwise. By comparing model projections to GPS measurements, we demonstrate that most subsidence in the region is due to non-isostatic processes (such as sediment compaction).
Data used to constrain GIA models are generally sensitive to both ice and Earth structure. Therefore data parametrizations that are insensitive to one input or the other are valuable constraints. One such commonly used parametrization is the postglacial decay time. Previous research has shown that the decay times are relatively insensitive to the ice history, and therefore provide a more robust constraint on Earth structure. In Chapter 4 I tested the extent of the ice insensitivity of decay times by considering a suite of ice reconstructions. I found that decay times are sensitive to ice history, and that the sensitivity depends on the location of the data relative to the geometry of the ice sheet. In particular, my results suggest that James Bay (in Hudson Bay) is a location that should not be used in a decay time analysis.
The GIA model applied in the projects described above is a 1-D, spherically symmetric model. However, it is known that the Earth's viscous structure is likely to feature significant lateral variation. This is evident in the differences in viscosities found in this thesis between what satisfies the RSL data in Hudson Bay (in Chapter 4) and the Gulf coast of the US (Chapter 3), as well as various previous studies. Therefore, in Chapter 5, I applied a 3-D model with lateral viscous structure determined by seismic shear wave velocity models, to determine whether incorporating this more realistic structure could resolve this apparent discrepancy. I demonstrated that the fit to relative sea level data on the Atlantic and Gulf coasts of the US can be significantly improved by incorporating lateral viscous structure, but also that there is significant uncertainty associated with the more complex viscous structure.
|
16 |
Isostatic equilibrium in spherical coordinates and implications for crustal thickness on the Moon, Mars, Enceladus, and elsewhereHemingway, Douglas J., Matsuyama, Isamu 16 August 2017 (has links)
Isostatic equilibrium is commonly defined as the state achieved when there are no lateral gradients in hydrostatic pressure, and thus no lateral flow, at depth within the lower viscosity mantle that underlies a planetary body's outer crust. In a constant-gravity Cartesian framework, this definition is equivalent to the requirement that columns of equal width contain equal masses. Here we show, however, that this equivalence breaks down when the spherical geometry of the problem is taken into account. Imposing the "equal masses" requirement in a spherical geometry, as is commonly done in the literature, leads to significant lateral pressure gradients along internal equipotential surfaces and thus corresponds to a state of disequilibrium. Compared with the "equal pressures" model we present here, the equal masses model always overestimates the compensation depth-by similar to 27% in the case of the lunar highlands and by nearly a factor of 2 in the case of Enceladus. Plain Language Summary "Isostasy" is the principle that, just as an iceberg floats on the water, crustal rocks effectively float on the underlying higher density mantle, which behaves essentially like a fluid on geologic timescales. Although there are subtle inconsistencies among the various ways isostasy can be defined, they have not been historically problematic for bodies like the Earth, where the crust is thin compared with the overall radius. When the thickness of the crust is a nonnegligible fraction of a planetary body's radius, however, it becomes important to take the spherical geometry into account. In this case, the inconsistencies in the definitions can lead to significant discrepancies. Here we argue that one of the most commonly used approaches, which requires equal width columns to contain equal masses, always results in overestimating the crustal thickness. In particular, we suggest that the lunar and Martian highlands crustal thickness may have been overestimated by similar to 27% and similar to 10%, respectively, and that the ice shell thickness for Saturn's small icy moon Enceladus may have been overestimated by nearly a factor of 2.
|
17 |
Past and Future Sea-Level Changes in French PolynesiaBotella, Albéric January 2015 (has links)
Among the various adverse effects of climate change, sea-level rise is expected to increase the severity and frequency of flooding events impacting the vulnerable, low-lying islands of French Polynesia. It has long been understood that sea-level changes are not spatially uniform, yet this aspect is not taken into account in the decision-making. Notably, no projections of future sea level have been produced specifically for this region so far, partly because the processes driving sea-level changes remain poorly constrained. To approach the issue, we present a detailed reconstruction of sea-level changes for the mid-to-late Holocene, based on the observation of coral proxies. This dataset is then used to calibrate a sea-level model in order to estimate the contribution of glacial isostatic adjustment to regional sea-level changes and to infer past variations in global ice volume. Building upon this baseline and exploiting recent outputs of climate models, we project that in a “worst-case” scenario, sea level would rise 1.05 meters by 2100 in French Polynesia, exceeding the value adopted in the French adaptation strategy by 0.45 meters. We conclude that spatial variability of sea-level rise should be considered in future risk studies for this and other regions.
|
18 |
Glacial isostatic adjustment modelling of the Coast Mountains of British ColumbiaLauch, Maximilian 20 April 2022 (has links)
The Coast Mountains in British Columbia contain over 10,000 km2 of glacial ice. While these glaciers have lost significant mass since the Little Ice Age (LIA; around 300 years before present), the melting rate has significantly increased over the past decade, likely due to the effects of climate change. The purpose of this study was to develop an approach to quantifying the isostatic response to LIA glacier change and investigate how it can further our understanding of the Earth’s rheology through GIA modelling. The Coast Mountains in southwestern British Columbia were chosen due to their significant ice mass loss since the LIA, their location in a tectonically active region, which includes a volcanic arc, and the presence of information of vertical land motion.
The GIA models in this study use a wide range of Earth rheological parameters that are then constrained through comparison to observations of vertical land motion in the region. The study used available Global Navigation Satellite System (GNSS) vertical velocity data as the observable from seven GNSS sites in southwestern BC, using a combination of Western Canada Deformation Array (WCDA) and British Columbia Active Control System (BCACS) GNSS stations. Raw data were analyzed using the GIPSY 6.4 software following the Precise Point Positioning processing strategy.
Two ice load histories were developed based on gridded estimates of present-day ice thicknesses in the region in order to simulate the change in the surface loading as the glacial ice mass fluctuates over time. Ice Load A used a simple uniform thickness change profile over 3 time-steps based on extrapolated modern melt rates. Ice Load B is more complex and utilized a published profile of glacier change through time basing the magnitude of volume changes on the volume-area scaling relationship with a range of coefficient values. This allowed for a range of ice change magnitudes to be tested. The Earth models used were spherically symmetric Preliminary Reference Earth Models (PREM). Their viscosity structure is based on VM5a for the transition zone and lower mantle, but with variable lithospheric thickness and asthenospheric viscosity. The goodness of fit for the modeled velocities were compared to the observed velocities using a normalized RMS (NRMS) statistic. Ice Load A models had a best fitting lithospheric thickness of 50 km and an asthenospheric viscosity of 2×1019 Pa s. For all variations of Ice Load B, the best fitting model parameters had lithospheric thicknesses ranging from 45 km to 55 km and asthenospheric viscosities between 6×1018 Pa s and 3×1019 Pa s. Corrected GNSS vertical velocity observations were tested to check the effects of interseismic vertical signal and assumed residual GIA from the Cordilleran Ice Sheet. However, the corrections did not improve the NRMS fit. Overall, the asthenospheric viscosity results from this study overlap with all the ranges found in the previous studies while lithospheric thicknesses agree with some past studies.
The results of this study generally align with previous work and the current understanding of the Coast Mountains region and can inform a future round of sea-level projections for the region as ice mass loss continues in the Coast Mountains. This study serves to further refine constraints on Earth rheology and can be used to guide future work on GIA in the region. / Graduate
|
19 |
Effects of Hot Isostatic Pressing on Copper Parts Additively Manufactured via Binder JettingYegyan Kumar, Ashwath 13 April 2018 (has links)
Copper is a material of interest to Additive Manufacturing (AM) owing to its outstanding material properties, which finds use in enhanced heat transfer and electronics applications. Its high thermal conductivity and reflectivity cause challenges in the use of Powder Bed Fusion AM systems that involve supplying high-energy lasers or electron beams. This makes Binder Jetting a better alternative as it separates part creation (binding together of powders) from energy supply (post-process sintering). However, it is challenging to fabricate parts of high density using this method due to low packing density of powder while printing. This work aims to investigate the effects of Hot Isostatic Pressing (HIP) as a secondary post-processing step on the densification of Binder Jet copper parts. By understanding the effects of HIP, the author attempts to create parts of near-full density, and subsequently to quantify the effects of the developed process chain on the material properties of resultant copper parts. The goal is to be able to print parts of desired properties suited to particular applications through control of the processing conditions, and hence the porosity. First, 99.47% dense copper was fabricated using optimized powder configurations and process parameters. Further, the HIP of parts sintered to three densities using different powder configurations was shown to result in an improvement in strength and ductility with porosity in spite of grain coarsening. The strength, ductility, thermal and electrical conductivity were then compared to various physical and empirical models in the literature to develop an understanding of the process-property-performance relationship. / Master of Science / Additive Manufacturing (AM) is a technique of fabricating an object in a layer-wise fashion. The layer-based approach provides opportunity for the manufacture of highly complex shapes. Binder Jetting is an AM technology that creates parts by the selective jetting of a polymeric binder onto successive layers of powdered material. In the case of metals, the printing process is followed by sintering in an oven, which burns out the binder and densifies the part. However, this is typically not enough to remove all the porosity in a specimen. While this enables the fabrication of a variety of materials, the porosity in sintered parts can be a detriment to their properties. This work aims to investigate the use of post-process Hot Isostatic Pressing (HIP) to eliminate the remaining porosity. HIP is a technique of applying high pressures at high temperatures in an inert gas medium. The goal of this research is to scientifically understand and quantify the effect of HIP on sintered parts made via Binder Jetting. The research is carried out in the context of copper, which has unique mechanical, thermal and electrical conductance properties that could be influenced by the presence of pores. In this work, the effects of the Binder Jetting-Sintering-HIP process chain on the porosity, and consequently the material properties, of copper parts are quantified. Resolving the issue of porosity can enable the printing of copper parts for specialized applications from electronic components to rocket engines. Developing a quantitative understanding can pave the way to design specific processing conditions to fabricate not only fully dense copper parts with superior properties, but also parts of a designed level of porosity that have specific target material properties.
|
20 |
Recovering Moho parameters using gravimetric and seismic dataAbrehdary, Majid January 2016 (has links)
Isostasy is a key concept in geoscience to interpret the state of mass balance between the Earth’s crust and mantle. There are four well-known isostatic models: the classical models of Airy/Heiskanen (A/H), Pratt/Hayford (P/H), and Vening Meinesz (VM) and the modern model of Vening Meinesz-Moritz (VMM). The first three models assume a local and regional isostatic compensation, whereas the latter one supposes a global isostatic compensation scheme. A more satisfactory test of isostasy is to determine the Moho interface. The Moho discontinuity (or Moho) is the surface, which marks the boundary between the Earth’s crust and upper mantle. Generally, the Moho interface can be mapped accurately by seismic observations, but limited coverage of seismic data and economic considerations make gravimetric or combined gravimetric-seismic methods a more realistic technique for imaging the Moho interface either regional or global scales. It is the main purpose of this dissertation to investigate an isostatic model with respect to its feasibility to use in recovering the Moho parameters (i.e. Moho depth and Moho density contrast). The study is mostly limited to the VMM model and to the combined approach on regional and global scales. The thesis briefly includes various investigations with the following specific subjects: 1) to investigate the applicability and quality of satellite altimetry data (i.e. marine gravity data) in Moho determination over the oceans using the VMM model, 2) to investigate the need for methodologies using gravimetric data jointly with seismic data (i.e. combined approach) to estimate both the Moho depth and Moho density contrast over regional and global scales, 3) to investigate the spherical terrain correction and its effect on the VMM Moho determination, 4) to investigate the residual isostatic topography (RIT, i.e. difference between actual topography and isostatic topography) and its effect in the VMM Moho estimation, 5) to investigate the application of the lithospheric thermal-pressure correction and its effect on the Moho geometry using the VMM model, 6) Finally, the thesis ends with the application of the classical isostatic models for predicting the geoid height. The main input data used in the VMM model for a Moho recovery is the gravity anomaly/disturbance corrected for the gravitational contributions of mass density variation due in different layers of the Earth’s crust (i.e. stripping gravity corrections) and for the gravity contribution from deeper masses below the crust (i.e. non-isostatic effects). The corrections are computed using the recent seismic crustal model CRUST1.0. Our numerical investigations presented in this thesis demonstrate that 1) the VMM approach is applicable for estimating Moho geometry using a global marine gravity field derived by satellite altimetry and that the possible mean dynamic topography in the marine gravity model does not significantly affect the Moho determination, 2) the combined approach could help in filling-in the gaps in the seismic models and it also provides good fit to other global and regional models more than 90 per cent of the locations, 3) despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the Moho result most significantly in many areas, 4) the application of the RIT correction improves the agreement of our Moho result with some published global Moho models, 5) the application of the lithospheric thermal-pressure correction improves the agreement of VMM Moho model with some other global Moho models, 6) the geoid height cannot be successfully represented by the classical models due to many other gravitational signals from various mass variations within the Earth that affects the geoid. / <p>QC 20160317</p>
|
Page generated in 0.0748 seconds