• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 702
  • 126
  • 102
  • 88
  • 26
  • 17
  • 12
  • 12
  • 8
  • 7
  • 6
  • 6
  • 4
  • 2
  • 1
  • Tagged with
  • 1531
  • 482
  • 232
  • 209
  • 192
  • 172
  • 154
  • 125
  • 118
  • 113
  • 88
  • 87
  • 84
  • 79
  • 77
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
651

Propriétés géochimiques et isotopiques des sédiments du détroit de Fram, océan Arctique : implications paléocéanographiques et paléoclimatiques

Maccali, Jenny Marianne 09 1900 (has links) (PDF)
La circulation océanique est un élément important du système climatique, notamment via les courants de surface, les upwellings et la formation d'eaux profondes. Les flux d'eau douce, glace de mer et courants océaniques, de l'Océan Arctique vers les mers nordiques jouent un rôle critique en ce qui a trait, en particulier, à l'Atlantic Meridional Overturning Circulation (AMOC). Les facteurs contrôlant ces flux, à l'échelle géologique, sont encore partiellement méconnus. Un moyen indirect de retracer l'intensité et les schémas de circulation de la glace de mer est de retracer l'origine des sédiments transportés par la glace de mer, et sédimentés au long des grands courants de glace et d'eau douce vers l'Atlantique Nord. Il s'agit donc de tracer un flux particulaire direct, lié à la matrice des particules détritiques. Un second flux, indirect, provient des éléments dissous dans les masses d'eau, marqués par les processus d'adsorption/désorption le long des marges où les flux particulaires terrigènes sont les plus importants. L'extraction de la phase authigène d'un signal dissous par lessivage spécifique, nous a permis de documenter l'évolution des masses d'eau transitant par le détroit de Fram depuis le dernier maximum glaciaire. Dans les deux premiers volets de notre étude, nous avons analysé la composition géochimique et les isotopes de Pb, Nd et Sr d'échantillons de surface prélevés le long d'un transect NE-SO dans le détroit de Fram. Ces analyses ont permis de définir trois domaines sédimentaires distincts : l'extrême est du détroit (i.e. la marge continentale du Svalbard), la partie est du détroit et enfin, la partie ouest du détroit. La marge continentale du Svalbard est sous l'influence des apports sédimentaires proximaux du Svalbard. La partie est du détroit reçoit du matériel sédimentaire des mers nordiques et possiblement des marges russes (e.g. mer de Barents et mer de Kara). Enfin, la partie ouest du détroit est sous l'influence des courants océaniques en provenance de l'océan Arctique. La carotte MC16, située dans le centre du détroit, est sous l'influence principale des masses d'eaux et de la glace de mer arctiques malgré et remonte jusqu'au dernier maximum glaciaire. Des recirculations dans la mer du Groenland peuvent influencer le régime courantologique du détroit de Fram, notamment lorsque ces gyres s'étirent vers le nord en période interglaciaire. Les sédiments de cette carotte (MC16) ont été lessivés afin de récupérer les fractions détritique (résidus) et échangeable (lessivats). La composition élémentaire des sédiments du détroit de Fram a permis de répartir les éléments en trois groupes : terrigènes, biogéniques et authigènes. La matière organique délivrée de manière discontinue aurait, par modifications des conditions d'oxydo-réduction, entraîné la redistribution de certains éléments tels que le manganèse et le molybdène. Le fer quant à lui, présente une mobilité moins importante que celle du manganèse et ne semble pas avoir subi de redistribution majeure. Le plomb et le néodyme incorporés dans les hydroxydes de fer n'auraient été que peu ou pas redistribués, validant ainsi la pertinence des analyses de lessivats le long de la colonne sédimentaire. Les rapports 206Pb/204Pb et 208Pb/206Pb ainsi que les isotopes de Nd et Sr de la fraction détritique définissent deux tendances (A et B) correspondant respectivement aux intervalles pre- et post-Dryas Récent. Une revue de la littérature nous a permis d'identifier la signature isotopique de trois sources majeures d'Ice Rafted Detritus (IRD), les marges continentales russes, canadiennes et groenlandaises. La tendance A (pré-Dryas Récent) reflète l'influence des marges canadiennes et des marges russes occidentales (mers de Barents et de Kara), régions occupées alors par de larges calottes de glace : les calottes Laurentienne et Innuitienne en Amérique du Nord et la calotte Eurasienne de la Scandinavie aux mers de Barents et Kara. Une excursion isotopique est enregistrée à ~19.8 ka BP et présente une composition isotopique vers le pôle russe, suggérant quelques instabilités de la calotte Eurasienne. Les échantillons de l'Holocène présentent des compositions isotopiques moins variables provenant de sources plus diverses : les marges canadiennes, les marges des mers Est Sibérienne et de Chukchi ainsi que des marges groenlandaises. L'intervalle du Dryas Récent (~12.9-11.6 ka BP) est marqué par une excursion isotopique vers le pôle canadien suggérant un drainage via l'océan Arctique du lac proglaciaire Agassiz. La composition isotopique de la fraction lessivable est liée aux processus d'échange de surface (boundary exchange processes), aux sites à flux particulaire élevé. Les masses d'eau acquerraient leur signature isotopique par échange avec les flux particulaires le long des marges continentales canadiennes et russes. Cette étude illustre la complémentarité des informations issues de l'analyse des fractions héritées (résidus) et échangeables (lessivats) dans les sédiments du détroit de Fram. Dans le troisième chapitre, nous nous sommes plus particulièrement intéressés au Dryas Récent, épisode froid de la dernière déglaciation qui s'est produit entre 12.9 et 11.6 ka BP. Cet événement est un des mieux documentés à l'égard de son impact climatique. Un drainage du lac proglaciaire Agassiz dans l'Atlantique Nord, via le Saint-Laurent, est fréquemment évoqué comme cause du Dryas Récent. Cet apport d'eau douce dans l'Atlantique Nord aurait provoqué un ralentissement de l'AMOC et donc un refroidissement aux moyennes et hautes latitudes de l'hémisphère nord. Toutefois, un passage par le nord via la rivière Mackenzie aurait été plus efficace pour ralentir l'AMOC. L'étude de deux carottes prélevées dans le centre du bassin Arctique (Ride de Lomonosov) et dans le détroit de Fram a mis en évidence une forte augmentation de la sédimentation lors du Dryas Récent. Ce matériel sédimentaire présente une signature similaire à celle des marges canadiennes. Nos résultats confirment l'hypothèse d'un événement paléocéanographique dans l'Arctique durant le Dryas Récent et révèlent également de profonds changements de la circulation arctique suite à cet événement. Le changement de source des IRD après le Dryas Récent suggère une modification de la circulation de la glace de mer. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Océan Arctique, Paleocéanographie, Sédiments, Isotopes Radiogéniques
652

Evaluation of Stable Chlorine and Bromine Isotopes in Sedimentary Formation Fluids

Shouakar-Stash, Orfan 18 March 2008 (has links)
Two new analytical methodologies were developed for chlorine and bromine stable isotope analyses of inorganic samples by Continuous-Flow Isotope Ratio Mass Spectrometry (CF-IRMS) coupled with gas chromatography (GC). Inorganic chloride and bromide were precipitated as silver halides (AgCl and AgBr) and then converted to methyl halide (CH3Cl and CH3Br) gases and analyzed. These new techniques require small samples sizes (1.4 µmol of Cl- and 1 µmol of Br-). The internal precision using pure CH3Cl gas is better than ∓0.04 ‰ (∓STDV) while the external precision using seawater standard is better than ∓0.07 ‰ (∓STDV). The internal precision using pure CH3Br gas is better than ∓0.03 ‰ (∓STDV) and the external precision using seawater standard is better than ∓0.06 ‰ (∓STDV). Moreover, the sample analysis time is much shorter than previous techniques. The analyses times for chlorine and bromine stable isotopes are 16 minutes which are 3-5 times shorter than all previous techniques. Formation waters from three sedimentary settings (the Paleozoic sequences in southern Ontario and Michigan, the Williston Basin and the Siberian Platform) were analyzed for 37Cl and 81Br isotopes. The δ37Cl and δ81Br values of the formation waters from these basins are characterized by large variations (between -1.31 ‰ and +1.82 ‰ relative to SMOC and between -1.50 ‰ and +3.35 ‰ relative to SMOB, respectively). A positive trend between δ81Br and δ37Cl values was found in all basins, where an enrichment of δ81Br is coupled by an enrichment of δ37Cl. In the Paleozoic sequences in southern Ontario and Michigan, the δ37Cl and δ81Br signatures of formation water collected from northwest of the Algonquin Arch are distinct from those collected from southeast of the Arch. All of the brines from the northwest of the Algonquin Arch are characterized by depleted isotopic values in comparison with the isotopic values from the brines from southeast of the Arch. The δ81Br signatures of the two brines show total separation with no overlaps. The δ37Cl values show some overlap between the two groups. One of the scenarios that can be put forward is that the Arch forms a water divide, where sediments southeast of the Arch are dominated by Appalachian Basin formation waters, and the sediments located northwest of the Arch are dominated by the Michigan Basin formation waters. The δ81Br and δ37Cl signatures of the Williston Basin brines suggest the existence of several different brines that are isotopically distinct and located in different stratigraphic units, even though they are chemically similar. The relatively wide range of δ37Cl and δ81Br of the formation waters suggests that the ocean isotopic signatures were variable over geologic time. A seawater temporal curve for δ81Br and δ37Cl was proposed with a larger variation of δ81Br in comparison with δ37Cl. The isotopic variations of these two elements agree very well with 87Sr/86Sr seawater variation during the same period. In general, the use of chlorine and bromine stable isotopes can be very useful in assessing the origin and the evolutionary processes involved in evolving formation waters and also in distinguishing different brines (end members). Furthermore, they can be employed to investigate the hydrogeological dynamics of sedimentary basins.
653

Nitrous Oxide Production in the Grand River, Ontario, Canada: New Insights from Stable Isotope Analysis of Dissolved Nitrous Oxide

Thuss, Simon Joseph January 2008 (has links)
Nitrous oxide (N₂O) is a powerful greenhouse gas, and its atmospheric concentration is increasing dramatically. N₂O is produced through the microbially-mediated processes of nitrification and denitrification. Since these processes have different substrates and isotopic enrichment factors, stable isotope analysis (δ¹⁵N and δ¹⁸O) of N₂O can be used to study the production of this important greenhouse gas. Although production in rivers accounts for a significant portion of the global N₂O budget, the isotopic composition of N₂O from this source is poorly characterized. Most of the previous work using stable isotopes of N₂O has been conducted in terrestrial or oceanic environments, and only one published study has measured δ¹⁵N and δ¹⁸O of N₂O produced in a riverine environment. The purpose of this research project was to use stable isotope analysis to characterize the processes responsible for N₂O production in the Grand River, Ontario, Canada, and to determine the spatial and temporal variability of the isotopic composition of the N₂O flux. To meet the study objectives, an offline “purge and trap” method was developed to collect and purify dissolved N₂O for stable isotope analysis. Using this method, δ¹⁵N and δ¹⁸O analysis of dissolved N₂O is possible for samples with concentrations as low as 6 nmol N₂O/L. Due to the isotopic effects of gas exchange and the back flux of tropospheric N₂O, there is a complex relationship between the δ¹⁵N and the δ¹⁸O of source, dissolved, and emitted N₂O in aquatic environments. A simple box model (SIDNO – Stable Isotopes of Dissolved Nitrous Oxide) was developed to properly interpret isotopic data for dissolved N₂O. Using this model, it was determined that the isotopic composition of emitted N₂O is much more representative of N₂O production in aquatic environments than the isotopic composition of dissolved N₂O. If the concentration, δ¹⁵N and δ¹⁸O of dissolved N₂O are measured, the magnitude and isotopic composition of the N₂O flux can be calculated. Sampling downstream of the major wastewater treatment plants (WWTPs) on the Grand River indicates that nitrification and denitrification in the river are strongly tied to diel changes in dissolved oxygen (DO) concentration. During the day, when DO concentrations are high, nitrification or nitrifier-denitrification is the dominant N₂O production pathway, with sediment denitrification also contributing to N₂O production. At night, when DO concentrations are low, denitrification in the sediments and at the sediment / water interface is the dominant production pathway. Using the SIDNO model, N₂O produced during the day was found to have a δ¹⁵N of -22‰ and a δ¹⁸O of 43‰. N₂O produced at night had a δ¹⁵N of -30‰ and a δ¹⁸O of 30‰. The isotopic composition of N₂O emitted from the Grand River is dominated by night-time production downstream of the Waterloo and Kitchener WWTPs during the summer. The flux and time weighted annual average isotopic composition of N₂O emitted from the Grand River is -18.5‰ and 32.7‰ for δ¹⁵N and δ¹⁸O respectively. These values are significantly more depleted than the only other published data for riverine N₂O production. If the Grand River is representative of global riverine N₂O production, these results will have significant implications for the global isotopic budget for atmospheric N₂O.
654

Fate of Chlorinated Compounds in a Sedimentary Fractured Rock Aquifer in South Central Wisconsin

Miao, Ziheng January 2008 (has links)
A study was carried out in a sedimentary fractured rock site located in south central Wisconsin, US, which was impacted by DNAPL releases estimated to occur in the 1950’s and 1960’s. The majority of the DNAPL has accumulated in the upper portion of the Lone Rock Formation at a depth between 140 and 180 ft bgs referred as Layer 5 in this study. A groundwater VOC plume of more than 3km long has formed in this Layer. The DNAPL is mainly composed of 1,1,1-TCA, PCE, TCE and BTEX, while large amounts of biodegradation products such as cis-DCE and 1,1-DCA are present in the plume. Long term VOC data have been collected at the site and diverse geological and hydrogeological techniques have been applied to have a better understanding of the DNAPL history and behavior of the VOC plume. Evidence of biodegradation was also documented near the DNAPL source in these studies. The thesis objectives of the present study aimed first to have a better understanding of the long term contaminant distribution and degradation history at the site. This objective was accomplished reviewing the VOC historical concentration data collected from 1992 to 2006 in the wells tapping the most contaminated. hydrogeological unit in the bedrock (Layer 5) and in the overburden aquifer (referred as Layer 2). The second objective aimed to evaluate the current degree or extent of biodegradation of chlorinated compounds, which was accomplished evaluating the current groundwater redox conditions and using a combined analysis of VOC concentration and carbon isotope data collected in groundwater in September 2007. The historical data collected between1992 to 2006 showed the degradation of the VOC plume in Layer 5 was controlled by the availability of electron acceptors and redox conditions in the fracture bedrock aquifer. This pattern and the extension of the VOC plume were linked to different DNALP pumping events in the source zone and the operation of a Hydraulic Barrier System. The current geochemical and isotope study showed a different pattern of biodegradation of chlorinated compounds in different parts of the plume. The cis-DCE tend to accumulate in the area from the source to the middle of the plume and around 80 % of biodegradation of 1,1,1-TCA to 1,1-DCA was observed in this area. The fringes of the plume were characterized by a dominant presence of TCE and 1,1,1 TCA. These patterns were linked to different redox conditions and amount of electron acceptors. The cis-DCE dominated area is characterized by anaerobic conditions and the presence of relative high amount of BTEX. The TCE-dominated area is under aerobic condition and no BTEX was found in this area. The operation of the Hydraulic Barrier System seems to have change redox condition which influenced the extent of degradation in the plume, especially in the area between the extraction wells. The formation of large amounts of VC in Layer 2 and the more reducing (at least sulfate reducing and maybe methanogenic conditions) of the groundwater in this Layer compared to Layer 5 confirmed the extent of VOC biodegradation is linked to the availability of electron donors. This study provides information about the current degree of the biodegradation of chlorinated compounds at a fracture rock site. This information is very valuable for the evaluation of natural attenuation as strategy for long term plume management or for future remediation strategies such as biostimulation or bioaugmentation at the site. This study also shows the present and long term behavior of the chlorinated compounds (degradation history) in the most contaminated hydrogeologic unit (Layer 5), has mainly been controlled by plume management strategies including DNAPL pumping in the source and the creation of a Hydraulic Barrier System. The ketones and BTEX, that acted as electron donors and carbon substrate for the microbial community responsible for the dechlorination of chlorinated compounds were shown to have controlled the past and current redox conditions and thus the degree and potential of biodegradation of chlorinated ethenes and chlorinated ethanes at the study site.
655

A Multi-Proxy Study of Holocene Atmospheric Circulation Dynamics Recorded in Lake Sediments in Fennoscandia

St. Amour, Natalie Ann 07 January 2009 (has links)
Cellulose-inferred lake water oxygen-isotope records were obtained from five throughflow lakes situated along a north-south transect across Fennoscandia to help develop a better picture of Holocene changes in atmospheric circulation in the region. This research addresses prior evidence for the existence of non-temperature-dependent shifts in d18O of precipitation in the early Holocene attributed to changes in atmospheric circulation. The validity of this hypothesis is tested through the development of oxygen-isotope records from lake sediments and their interpretation in the context of independent reconstructions of temperature and precipitation from pollen and chironomid head-capsules collected from the same or nearby sites, and well-documented changes in vegetation composition. Records of carbon and nitrogen elemental content and isotopic composition and magnetic susceptibility are included in this multi-proxy investigation. Extensive modern isotope hydrology datasets spanning several years at four of the five sites also help to inform interpretations of the cellulose d18O records. Key results from this research are: 1) Elevated d18O in relation to prevailing temperature occurred during the early Holocene (c. 10,000-6000 cal. BP) for sites in northern Fennoscandia (Lake Tibetanus, Lake Spåime), in harmony with previous interpretations suggesting that strong zonal atmospheric circulation led to deepening of the precipitation and isotope shadows in the lee of the Scandes Mountains. 2) Evidence from a southern site (Arbovatten) reveals a previously unrecognized negative offset in the d18O-temperature relation during the early Holocene, apparently transferred directly from the North Atlantic without the orographic effects associated with a topographic barrier. 3) The modern d18O-temperature relation appears to have been established throughout Fennoscandia by c. 6000-4000 cal. BP, probably due to generally weaker circumpolar atmospheric circulation in response to lower summer insolation. 4) Comparison of two sites (Lake Spåime, Svartkälstjärn) in a west-east transect across central Fennoscandia reveals higher-frequency variability in atmospheric circulation at submillennial scales throughout the Holocene, which appears to be analogous to contemporary variability in the North Atlantic Oscillation (NAO) at seasonal-to-decadal time-scales. Evidence of such NAO-like variability also exists at two northern sites (Lake Keitjoru, Oikojärvi) during the Holocene, likely reflecting variations in summer and winter atmospheric circulation. 5) Complex lake-specific changes in productivity occurred in response to Holocene climate change, as revealed by carbon and nitrogen elemental and isotopic data in lake sediments. A major shift in atmospheric circulation pattern occurring at c. 4000 cal. BP probably led to a reduction in soil-derived 13C-depleted nutrients in five lakes (Lake Keitjoru, Oikojärvi, Lake Spåime, Svartkälstjärn, Arbovatten) associated with changes in terrestrial vegetation. Changes in sediment nitrogen isotope composition also occurred in these lakes at c. 4000 cal. BP, possibly reflecting changing nutrient supply dynamics because of enhanced nitrogen losses during spring snowmelt.
656

Stable isotope analysis of human remains from the Early Contact Period site of La Capilla del Niño Serranito at La Capilla de Santa María Magdalena de Eten

Brown, Leslie E 05 May 2012 (has links)
Oxygen and carbon stable isotope analyses of bone and tooth enamel carbonate were conducted on a subset of the burial population (n = 17) of the La Capilla de El Niño Serranito of the La Capilla Santa María Magdalena de Eten site in the Lambayeque Valley of Peru. The individuals sampled display oxygen stable isotope (δ18Odw(V-SMOW) ) values consistent with higher altitude δ 18Odw(V-SMOW) levels. Carbon stable isotope (δ13C(VPDB)) values for the individuals sampled are consistent with C4 and potentially marine-based food sources. The results of the stable isotope analyses, when combined with elements from the site-specific archaeological and bioarchaeological data, provide a more comprehensive view of the lives and identities of the individuals examined.
657

Application of Speciated Isotopes Dilution Mass Spectronmetry to the Assessment of Human Health and Toxic Exposure

Fahrenholz, Timothy 19 February 2012 (has links)
Previous work by our research group demonstrated that quantitative chemical analysis of analytes, such as mercury and chromium species, in environmental matrices could be successfully carried out without using calibration curves and with correction for species interconversion by using EPA Method 6800A. This method encompasses isotope dilution mass spectrometry (IDMS) and speciated isotope dilution mass spectrometry (SIDMS), both of which are described in detail in chapter 1. Research described in this dissertation expands upon our earlier work by applying the method to the speciation of mercury in biological matrices, the speciation of glutathione in red blood cells and whole blood, and the analysis of enzyme activity in mammalian tissue. / Bayer School of Natural and Environmental Sciences; / Chemistry and Biochemistry; / PhD; / Dissertation;
658

Mechanistic studies of surface-confined electrochemical proton coupled electron transfer

2012 July 1900 (has links)
Mechanistic studies of electrochemical proton coupled electron transfer (PCET) have attracted attention for many decades due to their importance in many fields ranging from electrocatalysis to biology. However, mechanistic research is confined to only a few groups, and challenges in this field can be found in both theory and experiment. The contributions to mechanistic studies of electrochemical PCET reaction in this thesis can be categorized under the following two headings: 1) mechanistic studies of an aminobenzoquinone modified monolayer system with multiple electron/proton transfer reaction; 2) studies that attempt to develop the relationship between thermochemical data and electrochemical PCET mechanism. An aminobenzoquinone modified monolayer showing nearly ideal electrochemical behavior and high stability was successfully prepared and used as a model system for the mechanistic study of electrochemical multiple electron/proton transfer. This model system has been proposed to undergo a 2e3H transfer at low pH electrolyte and a 2e2H transfer at high pH electrolyte. Two non-destructive electrochemical techniques (cyclic voltammetry and chronocoulmetry) have been applied for the measurement of apparent standard rate constant as a function of pH. Both pH dependent apparent formal potential and pH dependent apparent standard rate constant have been used to determine the charge transfer mechanism of this monolayer system. Under the assumption of an operative PCET mechanism (i.e. electron transfer step is the rate determining step), a theoretical description of this system has been developed based on the refinement and extension of previous models. By combining this extended theoretical model with pH dependent apparent formal potential and apparent standard rate constant, charge transfer pathways have been determined and shown to be consistent with the observed pH dependent electrochemical response, in addition, the determined pathways in this aminobenzoquinone modified monolayer are similar to previous reported pathways for benzoquinone freely dissolved in aqueous buffered electrolyte. A series of analytical expressions built in this thesis demonstrate that the parameters that differentiate stepwise mechanisms from concerted mechanisms can be classified into two aspects: thermodynamic parameters, namely acid dissociation constants, standard formal potentials; and kinetic parameters, namely standard rate constants, standard transfer coefficients. Although attempts to understand the relation between controlling parameters and electrochemical PCET mechanism (stepwise versus concerted) has been reported previously by some groups, there are still lots of unresolved aspects requiring further investigation. In this thesis, an important conclusion has been drawn which is that for the stepwise mechanism, an apparent experimentally observable kinetic isotope effect (KIE) can be induced by solvent isotope induced variation of acid dissociation constants, which contradicts previous understanding. Additionally, for the first time, values of apparent KIE, which were measured for the aminobenzoquinone modified monolayer system with stepwise PCET mechanism, were successfully explained by variation in acid dissociation constants, not by variation in standard rate constants. Based on theoretical prediction, a nitroxyl radical modified bilayer showing one electron one proton transfer reaction has been prepared in an effort to afford experimental verification. After applying similar analytical procedures as those for the aminobenzoquinone modified monolayer system, this bilayer system has been shown to follow the concerted 1e1H transfer pathway in high pH electrolytes. These latter contributions provide evidence that further development in this field will eventually lead to a comprehensive theory that can use known thermochemical variables to fully predict PCET mechanism.
659

An investigation of fuel cycles and material flows for a lead-cooled fast reactor using the Monte Carlo code Serpent

Moberg, Kristina January 2012 (has links)
The Monte Carlo code Serpent has been used to model the material flows andisotope compositions for a lead cooled fast reactor. The demonstration sized trainingreactor ELECTRA was chosen for the investigation, and different fuel cycle scenarioswere studied. The scenarios differed in operation length (3 months, 1 year or 5years) and recycling technique (single and double PUREX or GANEX). The simulations gave detailed information on the changes of the isotope composition,activity and decay heat. The analysis of the generated waste also showed that thechoice of recycling method had great impact on the final storage time of the wastefrom the reprocessing. Performing double GANEX recycling, as compared to singlePUREX, reduced the storage time by a factor of about 3500. The results can be used for future work related to even more detailed studies ofmaterial flows and for designing an appropriate safeguards system.
660

The carbon and nitrogen composition of suspended particulate matter in Lake Erie, selected tributaries, and its outflow

Upsdell, Brynn January 2005 (has links)
Since their introduction to Lake Erie, dreissenid mussels may have reengineered the cycling of nutrients in the lake so that the nearshore benthic community intercepts, retains, and recycles greater quantities of nutrients. This study traces particulate matter on a basin scale by characterizing the chemical composition (POC and PN concentrations, POC/PN mass ratios, &delta;<sup>13</sup>C and &delta;<sup>15</sup>N) of suspended particulate matter in Lake Erie, three tributary inflows, and the lake outflow between May and October, 2002. The data are used to 1) determine the relative contributions of allochthonous and autochthonous sources to suspended particulate matter, 2) identify possible sources of suspended particulate matter, and 3) compare suspended particulate matter in the eastern basin of Lake Erie with that in the central and western basins. Mean POC concentrations range from 175 to 4494 µg/L and mean PN concentrations range from 33 to 812 µg/L in this system. Mean POC/PN mass ratios are similar across all sampling locations, ranging between 4. 5 and 6. 9, and indicate that suspended particulate matter at these sites is mainly derived from autochthonous sources, particularly plankton. The ranges of &delta;<sup>13</sup>C (-34 to -22 ?) and &delta;<sup>15</sup>N (1 to 12 ?) identify terrestrial plants and soil matter, aquatic macrophytes, phytoplankton, and sewage as possible sources of suspended particulate matter at all sites. Plankton is probably the dominant source of suspended particulate matter at each site, with smaller contributions from allochthonous and other autochthonous sources. Significant differences in the concentration and isotope data between inflow and lake or outflow sites indicate that tributary inflows may receive greater contributions from terrestrial plants and soils and aquatic macrophytes than the lake and outflow. &delta;<sup>15</sup>N signatures also identify animal manure as a possible source of suspended particulate matter at the inflows. PN concentrations and &delta;<sup>15</sup>N signatures suggest that the shallowest nearshore sites close to Peacock Point in the eastern basin receive PN from a source that is not present at the other eastern basin sites or at the sites in the central and western basins. This source may be related to dreissenid mussels at these nearshore sites recycling nitrogen back into the water column.

Page generated in 0.0276 seconds